Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3929
標題: 單層氧化石墨烯/聚苯胺混成材料之製備及其吸/脫附應用
Direct Molecular Exfoliation toward Single-Layer Graphene Oxide Nanosheet/Polyaniline Hybrids and Their Adsorption/Desorption Applications
作者: 陳冠良
Chen, Guan-Liang
關鍵字: graphite
石墨
aniline
graphite oxide
graphene oxide/polyaniline
in situ polymerization
苯胺
氧化石墨
氧化石墨烯/聚苯胺
原位聚合
出版社: 化學工程學系所
引用: 參考文獻 1. http://www.thednastore.com/ 2. http://laughterstrengthfood.com/ 3. http://jamesz.pixnet.net 4. Geim, A. K.; Novoselov, K. S., Nature Mater., 2007, 6, 183. 5. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., PANS., 2004, 102, 10451. 6. Michael S., Nature Nanotech., 2009, 4, 612. 7. Meyer, J. C.; Geim. A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., Nature, 2007, 446, 60. 8. Blake, P.; Brimicombe, P. D.; Nair R. R., Nano Lett., 2008, 8, 1704. 9. Malesevic, A. Carbon, 2007, 45, 2932. 10. Tung, V. C.; Allen, M. J.; Yang, Y., Nature Nanotech., 2009, 4, 25. 11. Liang, X.; Fu, Z.; Chou, S. Y., Nano Lett., 2007, 7, 3840. 12. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace G. G., Nature Nanotech., 2008, 3, 101. 13. Hummers, W.; Offena R., J. Am. Chem. Soc., 1958, 80, l339. 14. Nakkjma, T.; Matsuo Y., Carbon, 1994, 32, 3, 469. 15. Benjamin, C. B., Proceedings of the Royal Society of London, 1859, 10, 249. 16. Staudenmaier, L., BerDtsch Chem Ges, 1898, 31, 1481. 17. Sutter, P., Nature Mater., 2009, 8,171. 18. Kwon, G. S.; Okano, T., Adv. Drug Deliv. Rev., 1996, 21, 107. 19. Kwon, G. S., Crit. Rev. Ther. Drug, 1998, 15, 481. 20. Torchilin, P. V., J. Control. Release, 2001, 73, 137. 21. Moffitt, M.; Khougaz, K.; Eisenberg, A., Acc. Chem. Res., 1996, 29, 95. 22. Munk, P.; Prochazka, K.; Tuzar, Z.; Webber, S. E., Chemtech., 1998, 28, 20. 23. Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bosa, S.; Lee, J. H., Prog. Polym. Sci., 2010, 35, 1350. 24. Chen, W.; Yan, L., Nanoscale, 2011, 3, 3132. 25. Park, S.; Ruoff, R. S., Nature Nanotech., 2009, 4, 217. 26. Knieke, C.; Berger, A.; Voigt, M., Carbon, 2010, 48, 3196. 27. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H., Nature Nanotech., 2008, 3. 538. 28. Brodie, B. C.; Philos. Trans. R.Soc. London, 1859, 149, 249. 29. Wang, Y.; Chen, X.; Zhong, Y.; Zhu, F.; Loh, K. P., Appl. Phys. Lett., 2009, 95, 1. 30. Tung, V. C. Yang, Y., Nature nanotech., 2008, 4, 25. 31. Yavari, F., Small Lett., 2010, 6, 2535. 32. Jang, B. Z.; Liu, C.; Neff, D.; Yu, Z.; Wang, M. C.; Xiong, W.; Zhamu, A., Nano Lett., 2011, 11, 3785. 33. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Nano Lett., 2010, 10, 4863. 34. Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y., Energy Environ. Sci., 2011, 4, 2826. 35. Debelak, B.; Lafdi, K., Carbon, 2007, 45, 1727. 36. Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Alonso, M. H.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud''Homme, R. K.; Brinson, L. C., Nature Nanotech., 2008, 3, 327. 37. Natta, G; Mazzanti, G.; Corradini, P., Atti Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur., 1958, 25, 3. 38. Shirakawa, H.; Ikeda, S., Polym. J., 1971, 2, 231. 39. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., J.Chem. Soc., Chem. Commum., 1977, 16, 578. 40. Inanas, O.; Cundstrum, I., Synthetic Metals, 1987, 21, 13. 41. Skothein, T. A., Handbook of Conducting Polymer, 1981, 1. 42. Genies, E. M.; Boyle, A.; Lapkowski, M.; Tsintavis, C., Synthetic Metals, 1990, 36, 139. 43. Lux, F., Polymer, 1994, 35, 2915. 44. Zhang, T.; Mubeen, S.; Yoo, B.; Myung, N. V.; Deshusses, M. A., Nanotech., 2009, 20, 255501. 45. Mashat, L. A.; Shin, K.; zadeh, K. K.; Plessis, J. D.; Han, S. H.; Kojima, R. W.; Kaner, R. B.; Li, D.; Gou, X.; Ippolito, S. J.; Wlodarski, Wojtek., J. Phys. Chem. C, 2010, 114, 16168. 46. Dhawale, D. S.; Dubal, D. P.; Jamadade, V. S.; Salunkhe, R. R.; Lokhande, C. D., Synthetic Metals, 2010, 160, 519. 47. Lu, W. K.; Elsenbaumer, R. L.; Wessling, B., Synthetic Metals, 1995, 71, 2163. 48. MacDiarmid, A. G.; Chiang, J. C.; Halpern, M.; Huang, W. S.; Mu, S. L.; Somasir, N. L. D., Mol. Cryst. Liq. Cryst., 1985, 121, 173. 49. MacDiarmid, A. G.; Epstein, A. J., Faraday Discuss Chem. Soc., 1989, 88, 317. 50. Chen, C. H., J. Appl. Polym. Sci., 2003, 89, 2142. 51. Chen, C. H., J. Appl. Polym. Sci., 2002, 85, 1571. 52. Chen, C. H., J. Polym. Res., 2002, 9, 195. 53. Letheby, H. J., Chem. Soc., 1862, 15, 161. 54. Yang, S.; Tirmizi, S. A.; Burns, A.; Barney, A. A.; Jr, W. M. R., Synthetic Metals, 1989, 32, 191. 55. Hennion, M. C., J. Chromatogr. A, 1999, 856, 3. 56. Liška, J. Chromatogr. A, 2000, 885, 3. 57. Thurman, E. M.; Mills, M. S., Solid Phase Extraction, Principles and Practice. John Wiley & Sons, New York, 1998. 58. Majors, R. E., LC-GC, 1998, 5, 8. 59. Simpson, N. J. K., Solid Phase Extraction. Marcel Dekker, New York, 2000. 60. Sabik, H.; Jeannot, R.; Rondeau, B., J. Chromatogr. A, 2000, 885, 217. 61. Bruzzoniti, M. C.; Saranini, C.; Menlasti, E., J. Chromatogr. A, 2000, 922, 289. 62. Reid, K. R.; Kennedy, L. J.; Crick, E. W.; Conte, E. D., J. Chromatogr. A, 2002, 975, 135. 63. Autry, J. K.; Vaught, E. G.; Conte, E. D., Microchemical J., 2005, 80, 25. 64. Zhao, Q.; Huss, S. A.; Autry, J. K.; Reid, K. R.; Conte, E. D., Microchemical J. , 2005, 80, 45. 65. Zhao, Q.; Philpott, R. T.; Oakes, T. D.; Conte, E. D., Analyst, 2005, 130, 750. 66. 黃寶慧, 李茂榮, 固相萃取技術, Chemistry, 1998, 319, 56. 67. 洪世明, 使用固定有離子型界面活性劑之離子交換薄膜進行疏水物質吸附/脫附之研究, 碩士論文國立中興大學化學工程研究所, 台中, 台灣, 2007. 68. 徐照強, 使用固定陽離子界面活性劑之陽離子交換薄膜進行酚萃取之研究, 碩士論文國立中興大學化學工程研究所, 台中, 台灣, 2008. 69. Keith, L. H.; Telliard, W. A., Environ. Sci. Technol., 1979, 13, 416. 70. 吳珮瑱, 中、高濃度酚在中空纖維薄膜生物反應器中降解效率, 碩士論文, 元智大學化學工程研究所, 中壢, 台灣, 2003. 71. Seetharam, G. B.; Saville, B. A., Water Research, 2003, 37, 436. 72. 黃俊智, 化學沉澱與樹酯吸附法處裡分衍生物廢水之研究, 碩士論文, 元智大學化學工程研究所, 中壢, 台灣, 1993. 73. Zheng, G.; Wu, J.; Wang, W.; Pan, C., Carbon, 2004, 42, 2839. 74. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., Nature Nanotech., 2008, 3, 563. 75. Hamilton, C. E.; Lomeda, J. R.; Sun, Z., Tour, M.; Barron, A. R.; Nano Lett., 2009, 9, 3460. 76. Sanji, B.; Drzal, L. T., Nano Lett., 2009, 9, 167. 77. Qian, W.; Hao, R.; Hou, Y.; Shen, C.; Gao, H.; Liang, X., Nano Res., 2009, 2, 706. 78. Englert, J. M.; Ro¨hrl, J.; Schmidt, C. D.; Graupner, R.; Hundhausen, M.; Hauke, F.; Hirsch, A., Adv. Mater., 2009, 21, 4265. 79. Behabtu, N.; Lomeda, J. R.; Green, M. J.; Higginbotham, A. L.; Sinitskii, A.; Kosynkin, D. V.; Tsentalovich, D.; Nichol, A.; Pasquali, M., Nature Nanotech., 2010, 5, 406. 80. Su, C. Y.; Lu, A-Y.; Xu, Y.; Chen, F-R.; Khlobystov, A. N.; Li, L-J., ACS Nano, 2011, 5, 2332. 81. Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang , X., Electrochem. commum., 2009, 11, 1158. 82. Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G.; ACS Nano, 2010, 4, 1963. 83. Xu, J.; Wang, K.; Zu, S-Z,; Han, B-H,; Wei, Z., ACS Nano, 2010, 4, 5019. 84. Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F., Carbon, 2010, 48, 487. 85. Bagheri, H.; Mir, A.; Babanezhad, E., Anal. Chem. Acta, 2005, 532, 89. 86. Mousavi, M.; Noroozian, E.; Jalali-Heravi, M.; Mollahosseini, A., Anal. Chem. Acta, 2007, 581, 71. 87. Lee, K-H.; Park, B. J.; Song, D. H.; Chin, I.-J.; Choi, H. J., Polymer, 2009, 50, 4372. 88. Du, W.; Zhao, F.; Zeng, B.; J. Chromatogr. A, 2009, 1216, 3751. 89. Zhang, Y.; Li, Q.; Cui, H.; Zhai, J., Electrochim. Acta, 2010, 55 7219. 90. Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H., Electrochim. Acta, 2010, 55, 3909–3914. 91. Abuilaiwi, F. A.; Laoui, T.; Al-Harthi, M; Atieh, M. A. Arab. J. Sci. Eng., 2010, 35, 37. 92. Kaniyoor, A.; Baby, T. T.; Ramaprabhu, S. J. Mater. Chem., 2010, 20, 8467. 93. Xu, L. Q.; Liu, Y. L.; Neoh, K. G.; Kang, E. T.; Fu, G. D. Macromol. Rapid Commun., 2011, 32, 684. 94. Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. ACS Appl. Mater. Interfaces, 2010, 2, 821. 95. Liao, K. H.; Mittal, A.; Bose, S.; Leighton, C.; Mkhoyan, K. A.; Macosko, C. W., ACS Nano., 2011, 5, 1253. 96. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. Solid State Commun. 2007, 143, 101. 97. Li, S. S.; Tu, K. H.; Lin, C. C.; Chen, C. W.; Chhowalla, M. ACS Nano., 2010, 4, 3169. 98. Matsuo, Y.; Higashika, S.; Kimura, K.; Miyamoto, Y.; Fukutsuka, T.; Sugie, Y. J. Mater. Chem., 2002, 12, 1592. 99. Majumdar, D.; Baskey, M.; Saha, S. K. Macromol. Rapid Commun. 2011, 32, 1277. 100. Huang, K. C.; Huang, J. H.; Wu, C. H.; Liu, C. Y.; Chen, H. W.; Chu, C. W.; Lin, J. T.; Lin, C. L.; Ho, K. C. J. Mater. Chem., 2011, 21, 10384. 101. An, H.; Wang, Y.; Wang, X.; Li, N.; Zheng, L. J. Solid State Electrochem., 2010, 14, 651. 102. Yu, C. Y.; Chen, C. P.; Chan, S. H; Hwang, G. W.; Ting, C. Chem. Mater., 2009, 21, 3262. 103. Chen, C. P.; Luo, C.; Ting, C.; Chuang, S. C. Chem. Comm., 2011, 47, 1845. 104. Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. J. Am. Chem. Soc., 2008, 130, 12828. 105. Matsuo, Y.; Miyabe, T.; Fukutsuka, T.; Sugie, Y. Carbon, 2007, 45, 1005. 106. Humayun, R.; Karakas, P. R.; Dahlstrom, U.; Ozkan, S.; Tomasko, D. L., Ind. Eng. Chem. Res., 1998, 37, 3089. 107. Bagheri, H.; Mir, A.; Babanezhad, E., Anal. Chim. Acta, 2005, 532, 89. 108. Dikin, D.; Stankovich, A.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G,; Nguyen, S. T.; Ruoff, S., Nature, 2007, 448, 457. 109. Gulje, S.; Han, S,; Wang, M.; Wang, K. L.; Kaner, R. B.; Nano Lett., 2007, 7 3394. 110. Li, D.; Kaner, R. B., Science, 2008, 320, 1170. 111. Myers, D., Surfactant Science and Technology, Wiley Interscience, Hoboken, NJ, 2006.
摘要: 本研究使用一種快速、容易及可以大規模製造單層氧化石墨烯薄片(GOSs)的方法即直接分子脫層法。此方法主要是在室溫下以原位聚合法(in situ polymerization)將苯胺單體充分分散在氧化石墨水溶液中,然後使苯胺單體在氧化石墨的層與層之間進行氧化聚合反應,而使氧化石墨達到脫層效果,獲得二維片狀的氧化石墨烯薄片;整個系統當中我們以聚苯胺高分子(PANI)作為一個將氧化石墨分子層間距離撐開的工具。經由化學脫層法脫層後的氧化石墨烯薄片,因為有聚苯胺奈米管柱成長於氧化石墨烯表面,正好分隔開來氧化石墨烯層與層之間避免重新堆疊回去,形成獨特的二維片狀的氧化石墨烯/聚苯胺。 首先,因為聚苯胺高分子在原位聚合反應時,會隨著反應時間增加而令聚苯胺分子的分子鏈段成長,因此對氧化石墨層間距離造成變化。我們利用XRD分析,來觀察聚苯胺奈米管柱在氧化石墨層間所發生層間距離的變化。再利用TEM表面型態觀察方式直接來觀察氧化石墨隨苯胺單體隨原位聚合時間增長,觀察到氧化石墨層數減少(變透明);更利用橫切片取樣從TEM觀察到單層氧化石墨烯的證據。氧化石墨在脫層後得到氧化石墨烯/聚苯胺奈米薄片後從界達電位(24 mV→36 mV)證明在水中具有穩定化,表面電阻明顯降低(108→103 Ω/sq)及功函數數值介於5.0-5.1 eV之間,這些數據都證明氧化石墨烯/聚苯胺奈米薄片具有作為電極材料在光電子器件中的應用潛力。 再來,透過氧化石墨烯/聚苯胺奈米薄片的結構上判斷,由於氧化石墨烯本身就具備兩性分子(Amphiphiles)特性,加上經由聚苯胺利用原位聚合與之結合後,更增加了表面官能基的不同對立離子(counter ions)。所以我們先利用了陰、陽離子染料的批次吸附觀察到氧化石墨烯/聚苯胺奈米薄片皆可以利用離子交換方式進行吸附;更加利用共軛焦顯微鏡來觀察來確認表面吸附位置。無論是氧化石墨烯或者聚苯胺皆具有疏水官能基等等性質,確認氧化石墨烯/聚苯胺奈米薄片具備在固相萃取中當疏水型吸附劑(adsorbent)的能力。以不同pH值環境下的酚類進行流動吸附研究及重複使用固相萃取的探討。
The preparation of single-layer graphene oxide nanosheets (GOSs) through a rapid, facile, and large-scale direct molecular exfoliation method was successfully developed. Polyaniline (PANI) was employed as a layered space enlarger. Individual GOSs at room temperature were readily and rapidly obtained through in situ polymerization of aniline upon the two-dimensional GOS platform. The chemically modified GOS platelets formed unique 2D layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO inter-layers and extended over the GO surface. XRD was employed to measure the difference of the distances between the graphite oxide layers which changed with the polyaniline molecular weight during in situ polymerization. The results revealed that inter-gallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. The transparent folding GOSs were, therefore, observed in transmission electron microscopy (TEM) images. GOS/PANI nanohybrids possessing high conductivities and large work functions have potential for applications as electrode materials in optoelectronic devices. Furthermore, according to the structure of oxidized GOSs/PANI nanorods, the characteristic of amphipphiles was already existed itself. The surface properties of the GOSs/PANI nanorods were coupled with in situ polymerization of polyaniline with the addition of functional groups, i.e. the increase of counter ions. Ion-exchange adsorption ability was also observed using for cationic or anionic dye adsorption. The adsorption positions of GOSs/PANI nanorods were identified using confocal microscopy. The ability of being a hydrophobic solid phase adsorbent was further confirmed due to both GO and polyaniline exhibiting hydrophobic functional groups. The solid phase extraction of phenol and re-usability of solid phase extraction under different pH environments were also investigated.
URI: http://hdl.handle.net/11455/3929
其他識別: U0005-3001201210003900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3001201210003900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.