Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3931
標題: 側鏈型二維共軛聚噻吩衍生物於高分子太陽能電池之研究與應用
Synthesis of Two-Dimensional Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells
作者: 王杏如
Wang, Hsing-Ju
關鍵字: Polymer Solar Cell, Polythiophenes, Organic Synthesis
高分子太陽能電池, 聚噻吩, 有機合成
出版社: 化學工程學系所
引用: (1) Smalley, P. R. E. Energy & NanoTechnology Conference, Rice University May 3, 2003. (2) 馬振基; 張正華; 李陵嵐; 葉楚平; 楊平華有機與塑膠太陽能電池; 五南圖書出版股份有限公司, 2007. (3) A.E.Becquerel Acad. Sci. 1839, 9. (4) Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676. (5) Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D. Materials Today 2007, 10, 28. (6) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem.Rev. 2007, 107, 1324. (7) Krebs, F. C.; Gevorgyan, S. A.; Alstrup, J. J. Mater. Chem. 2009, 19, 5442. (8) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595. (9) O’Regan, B.; Gratzel, M. Nature 1991, 353, 737. (10) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J. Am. Chem. Soc. 2001, 123, 1613. (11) Lloyd, M. T.; Anthony, J. E.; Malliaras, G. G. Materials Today 2007, 10, 34. (12) Steinberger, S.; Mishra, A.; Reinold, E.; Levichkov, J.; Uhrich, C.; Pfeiffer, M.; Bauerle, P. Chem. Commun. 2011, 47, 1982. (13) Lin, L. Y.; Chen, Y. H.; Huang, Z. Y.; Lin, H. W.; Chou, S. H.; Lin, F.; Chen, C. W.; Liu, Y. H.; Wong, K. T. J. Am. Chem. Soc. 2011, 133, 15822. (14) Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A. J. J. Phys. Chem. B 2005, 109, 9505. (15) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. (16) Advincula, R. C. Dalton Trans. 2006, 2778. (17) Sang, G. Y.; Zhou, E. J.; Huang, Y.; Zou, Y. P.; Zhao, G. J.; Li, Y. F. J. Phys. Chem. C. 2009, 113, 5879. (18) Sang, G.; Zou, Y.; Huang, Y.; Zhao, G.; Yang, Y.; Li, Y. Appl. Phys. Lett. 2009, 94, 193302. (19) Mandoc, M. M.; Veurman, W.; Koster, L. J. A.; Koetse, M. M.; Sweelssen, J.; de Boer, B.; Blom, P. W. M. J. Appl. Phys. 2007, 101, 104512. (20) Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2006, 16, 45. (21) Jenny, N. Materials Today 2010, 14, 462. (22) Brabec, C. J.; Gowrisanker, S.; Halls, J. J.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22, 3839. (23) Ross, R. B.; Cardona, C. M.; Guldi, D. M.; Sankaranarayanan, S. G.; Reese, M. O.; Kopidakis, N.; Peet, J.; Walker, B.; Bazan, G. C.; Van Keuren, E.; Holloway, B. C.; Drees, M. Nat. Mater. 2009, 8, 208. (24) Chen,L. M. ;Zhang, H.; Gang, L.; Yang, Y. Adv. Mater. 2009, 21, 1434. (25) Hallermann, M.; Kriegel, I.; Como, E. D.; Berger, J. M.; Hauff, E. v.; Feldmann, J. Adv. Funct. Mater. 2009, 19, 3662. (26) Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009, 21, 1323. (27) Xin, H.; Kim, F. S.; Jenekhe, S. A. J. Am. Chem. Soc. 2008, 130, 5424. (28) Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Frechet, J. M. J J. Am. Chem. Soc. 2008, 130, 16324. (29) Thompson, B. C.; Frechet, J. M. Angew. Chem. Int. Ed. 2008, 47, 58. (30) Shunsuke, Y.;Jiamo G.; Hideo O.;Shinzaburo I. Adv. Funct. Mater. 2008, 18, 2555. (31) Moule, A. J.; Meerholz, K. Adv. Mater. 2008, 20, 240. (32) Matsuo, Y.; Kanaizuka, K.; Matsuo, K.; Zhong, Y. W.; Nakae, T.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 5016. (33) Dante, M.; Peet, J.; Nguyen, T. Q. J. Phys. Chem. C 2008, 112, 7241. (34) Baumann, A.; Lorrmann, J.; Deibel, C.; Dyakonov, V. Appl. Phys. Lett. 2008, 93, 252104. (35) Coffey, D. C.; Reid, O. G.; Rodovsky, D. B.; Bartholomew, G. P.; Ginger, D. S. Nano Lett. 2007, 7, 738. (36) www.nrel.gov/ncpv/images/efficiency_chart.jpg 2012. (37) Dou, L.; You, J.; Yang, J.; Chen, C.C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Nat. Photon. 2012, 6, 180. (38) Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153. (39) ASTM G-173-03. Terrestrial Reference Spectra for Photovoltaic Performance Evaluation (American Society for Testing Materials (ASTM) International, West Conshohocken) (40) Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem.Rev. 2009, 109, 5868. (41) Brabec, C. J.; Zerza, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; Hummelen, J. C.; Sariciftci, S. Chem. Phys. Lett. 2001, 340, 232. (42) Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Muller, L.; Leo, K. Adv. Funct. Mater. 2011, 21, 1076. (43) Ahlswede, E.; Hanisch, J.; Powalla, M. Appl. Phys. Lett. 2007, 90, 163504. (44) Tang, C. W. Appl. Phys. Lett. 1986, 48, 183. (45) Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Appl.Phys. Lett. 1996, 68, 3120. (46) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. (47) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. (48) Coakley, K. M.; McGehee, M. D. Appl. Phys. Lett. 2003, 83, 3380. (49) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nat. Mater. 2005, 4, 455. (50) Ravirajan, P.; Peiro, A. M.; Nazeeruddin, M. K.; Graetzel, M.; Bradley, D. D. C.; Durrant, J. R.; Nelson, J. .J. Phys. Chem. B 2006, 110, 7635. (51) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. (52) Hoppe, H.; Sariciftci, N. S. J Mater. Res.2004, 19, 1924. (53) Shuttle, C. G.; O’Regan, B.; Ballantyne, A. M.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R. Phys. Rev. B 2008, 78, 113201. (54) Riedel, I.; von Hauff, E.; Parisi, J.; Martin, N.; Giacalone, F.; Dyakonov, V. Adv. Funct. Mater. 2005, 15, 1979. (55) Roncali , J. Macro. Rap. Commun. 2007, 28, 1761. (56) Wienk, M. M.; Struijk, M. P.; Janssen, R. A. J. Chem. Phys. Lett. 2006, 422, 488. (57) Colladet, K.; Fourier, S.; Cleij, T. J.; Lutsen, L.; Gelan, J.; Vanderzande, D.; Huong Nguyen, L.; Neugebauer, H.; Sariciftci, S.; Aguirre, A.; Janssen, G.; Goovaerts, E. Macromolecules 2007, 40, 65. (58) Hou, J.; Chen, H.Y.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008, 130, 16144. (59) Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K. Macromolecules 2008, 41, 8302. (60) Hou, J.; Chen, H.Y.; Zhang, S.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G. J. Am. Chem. Soc.2009, 131, 15586. (61) Choi, S. H.; Frisbie, C. D. J. Am. Chem. Soc. 2010, 132, 16191. (62) Tsai, J.H.; Chueh, C.C.; Chen, W.C.; Yu, C.Y.; Hwang, G.W.; Ting, C.; Chen, E.C.; Meng, H.F. J. Polym. Sci. A Polym. Chem. 2010, 48, 2351. (63) Lee, W.Y.; Cheng, K.F.; Wang, T.F.; Chen, W.C.; Tsai, F.Y. Thin Solid Films 2010, 518, 2119. (64) Tsai, J.H.; Chueh, C.C.; Lai, M.H.; Wang, C.F.; Chen, W.C.; Ko, B.T.; Ting, C. Macromolecules 2009, 42, 1897. (65) Li, Y.; Zou, Y. Adv. Mater. 2008, 20, 2952. (66) Tan, Z. a.; Zhou, E.; Yang, Y.; He, Y.; Yang, C.; Li, Y. Eur. Polym. J 2007, 43, 855. (67) Hou, J.; Tan, Z. a.; Yan, Y.; He, Y.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2006, 128, 4911. (68) Zhou, E.; Tan, Z. a.; Huo, L.; He, Y.; Yang, C.; Li, Y. J. Phys. Chem. B 2006, 110, 26062. (69) Sang, G.; Zou, Y.; Li, Y. J. Phys. Chem. C 2008, 112, 12058. (70) Sang, G.; Zhou, E.; Huang, Y.; Zou, Y.; Zhao, G.; Li, Y. J. Phys. Chem. C 2009, 113, 5879. (71) Hou, J.; Huo, L.; He, C.; Yang, C.; Li, Y. Macromolecules 2005, 39, 594. (72) Hou, J.; Tan, Z. a.; He, Y.; Yang, C.; Li, Y. Macromolecules 2006, 39, 4657. (73) Tan, Z. ; Hou, J.; He, Y.; Zhou, E.; Yang, C.; Li, Y. Macromolecules 2007, 40, 1868. (74) Zou, Y.; Wu, W.; Sang, G.; Yang, Y.; Liu, Y.; Li, Y. Macromolecules 2007, 40, 7231. (75) Li, H.; Parameswaran, M.; Nurmawati, M. H.; Xu, Q.; Valiyaveettil, S. Macromolecules 2008, 41, 8473. (76) Huo, L.; Chen, T. L.; Zhou, Y.; Hou, J.; Chen, H.Y.; Yang, Y.; Li, Y. Macromolecules 2009, 42, 4377. (77) Huo, L.; Tan, Z. a.; Wang, X.; Zhou, Y.; Han, M.; Li, Y. J. Polym. Sci. A Polym. Chem. 2008, 46, 4038. (78) Zhou, E.; He, C.; Tan, Z. A.; Yang, C.; Li, Y. J. Polym. Sci. A Polym. Chem. 2006, 44, 4916. (79) Hou, J.; Yang, C.; Li, Y. Synth. Met. 2005, 153, 93. (80) Zou, Y.; Sang, G.; Wu, W.; Liu, Y.; Li, Y. Synth. Met. 2009, 159, 182. (81) Tan, Z. a.; Tang, R.; Zhou, E.; He, Y.; Yang, C.; Xi, F.; Li, Y. J.Appl. Polym. Sci. 2008, 107, 514. (82) Huo, L.; Tan, Z. ; Zhou, Y.; Zhou, E.; Han, M.; Li, Y. Macromol. Chem. Phys. 2007, 208, 1294. (83) Shen, P.; Sang, G.; Lu, J.; Zhao, B.; Wan, M.; Zou, Y.; Li, Y.; Tan, S. Macromolecules 2008, 41, 5716. (84) Huo, L.; Zhou, Y.; Li, Y. Macro. Rap. Commun. 2009, 30, 925. (85) Chang, Y.T.; Hsu, S.L.; Su, M.H.; Wei, K.H. Adv. Funct. Mater. 2007, 17, 3326. (86) Chang, Y.T.; Hsu, S.L.; Chen, G.Y.; Su, M.H.; Singh, T. A.; Diau, E. W.G.; Wei, K.H. Adv. Funct. Mater. 2008, 18, 2356. (87) Chang, Y.T.; Hsu, S.L.; Su, M.H.; Wei, K.H. Adv. Mater. 2009, 21, 2093. (88) Peeters, H.; Verbiest, T.; Koeckelberghs, G. J. Polym. Sci. A Polym. Chem. 2009, 47, 1891. (89) Yu, C.Y.; Ko, B.T.; Ting, C.; Chen, C.P. Sol. Energ. Mat. Sol. Cells 2009, 93, 613. (90) Huang, F.; Chen, K.S.; Yip, H.L.; Hau, S. K.; Acton, O.; Zhang, Y.; Luo, J.; Jen, A. K. Y. J. Am. Chem. Soc. 2009, 131, 13886. (91) Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789. (92) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; NeaguPlesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc.2008, 130, 732. (93) Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Adv. Mater. 2011, 23, 2367. (94) Hou, J. H.; Chen, T. L.; Zhang, S. Q.; Huo, L. J.; Sista, S.; Yang, Y. Macromolecules 2009, 42, 9217. (95) Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.; Inganas, O. Adv. Funct. Mater. 2005, 15, 745. (96) Park, J. Y.; Koenen, N.; Forster, M.; Ponnapati, R.; Scherf, U.; Advincula, R. Macromolecules 2008. (97) Chen, M.H.; Hou, J.; Hong, Z.; Yang, G.; Sista, S.; Chen, L.M.; Yang, Y. Adv. Mater. 2009, 21, 4238. (98) Skabara, P. J.; Berridge, R.; Serebryakov, I. M.; Kanibolotsky, A. L.; Kanibolotskaya, L.; Gordeyev, S.; Perepichka, I. F.; Sariciftci, N. S.; Winder, C. J. Mater. Chem. 2007, 17, 1055. (99) Mondal, R.; Becerril, H. A.; Verploegen, E.; Kim, D.; Norton, J. E.; Ko, S.; Miyaki, N.; Lee, S.; Toney, M. F.; Bredas, J.L.; McGehee, M. D.; Bao, Z. J.Mater.Chem. 2010, 20, 5823. (100) Wakim, S.; Beaupre, S.; Blouin, N.; Aich, B.R.; Rodman, S.; Gaudiana, R.; Tao, Y.; Leclerc, M. J.Mater.Chem. 2009, 19, 5351. (101) Beaupre, S.; Boudreault, P. L.; Leclerc, M. Adv. Mater. 2010, 22, E6. (102) Xia, Y.; Su, X.; He, Z.; Ren, X.; Wu, H.; Cao, Y.; Fan, D. Macromo. Rap. Commun. 2010, 31, 1287. (103) Zhou, E.; Yamakawa, S.; Zhang, Y.; Tajima, K.; Yang, C.; Hashimoto, K. J. Mater.Chem. 2009, 19, 7730. (104) Chul Kim, S.; Vijaya Kumar Naidu, B.; Lee, S.K.; Shin, W.S.; Jin, S.H.; Jung, S.J.; Cho, Y.R.; Shim, J.M.; Kook Lee, J.; Wook Lee, J.; Hyeon Kim, J.; Gal, Y.S. Sol. Energ. Mat. Sol. Cells 2007, 91, 460. (105) Bijleveld, J. C.; Shahid, M.; Gilot, J.; Wienk, M. M.; Janssen, R. A. J. Adv.Funct.Mater. 2009, 19, 3262. (106) Chan, S.H.; Chen, C.P.; Chao, T.C.; Ting, C.; Lin, C.S.; Ko, B.T. Macromolecules 2008, 41, 5519. (107) Zhao, N.; Botton, G. A.; Zhu, S.; Duft, A.; Ong, B. S.; Wu, Y.; Liu, P. Macromolecules 2004, 37, 8307. (108) McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328. (109) Lim, B.;Baeg, K.J.; Jeong, H.G.; Jo J.; Kim, H.S.; Park, J.W.; Noh, Y.Y.; Vak, D.J.; Park, J.H.; Park, J.W.; Kim, D.Y. Adv. Mater. 2009, 21, 2808. (110) Shirota, Y.; Okumoto, K.; Inada, H. Synth. Met. 2000, 111-112, 387. (111) Fong, H. H.; Papadimitratos, A.; Malliaras, G. G. Appl. Phys. Lett. 2006, 89, 172116. (112) Lin, S.L.; Chan, L.H.; Lee, R.H.; Yen, M.Y.; Kuo, W.J.; Chen, C.T.; Jeng, R.J. Adv. Mater. 2008, 20, 3947. (113) Kwon, O.; Barlow, S.; Odom, S. A.; Beverina, L.; Thompson, N. J.; Zojer, Bredas, J.L.; Seth R. M., J. Phys. Chem. A. 2005, 109, 9346. (114) Drolet, N.; Morin, J.F.; Leclerc, N.; Wakim, S.; Tao, Y.; Leclerc, M. Adv.Funct. Mater. 2005, 15, 1671. (115) Li, W. W.; Han, Y.; Chen, Y. L.; Li, C. H.; Li, B. S.; Bo, Z. S. Macromo.Chem.Phys.2010, 211, 948. (116) Huang, S. P.; Jen, T. H.; Chen, Y. C.; Hsiao, A. E.; Yin, S. H.; Chen, H. Y.; Chen, S. A. J. Am. Chem. Soc. 2008, 130, 4699. (117) Iovu, M. C.; Sheina, E. E.; Gil, R. R.; McCullough, R. D. Macromolecules 2005, 38, 8649. (118) Huang, F.; Chen, K.S.; Yip, H.L.; Hau, S. K.; Acton, O.; Zhang, Y.; Luo, J.; Jen, A. K. Y. J. Am. Chem. Soc. 2009, 131, 13886. (119) Mayer, A. C.; Toney, M. F.; Scully, S. R.; Rivnay, J.; Brabec, C. J.; Scharber, M.; Koppe, M.; Heeney, M.; McCulloch, I.; McGehee, M. D. Adv. Funct. Mater. 2009, 19, 1173. (120) Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.T.; Li, G.; Ray, C.; Yu, L. J. Am. Chem. Soc. 2009, 131, 7792. (121) Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv Mater 2010, 22, E135. (122) Tamao, K.; Kodama, S.; Nakajima, I.; Kumada, M.; Minato, A.; Suzuki, K. Tetrahedron 1982, 38, 3347. (123) Chen, T.A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233. (124) Zen, A.; Saphiannikova, M.; Neher, D.; Grenzer, J.; Grigorian, S.; Pietsch, U.; Asawapirom, U.; Janietz, S.; Scherf, U.; Lieberwirth, I.; Wegner, G. Macromolecules 2006, 39, 2162. (125) Li, Y.W.; Xue, L.;Xia, H.; Xu, B.; Wen, S.;Tian, W. J. Polym. Sci. A Polym. Chem.2008, 46, 3970. (126) Zou, Y.; Wu, W.; Sang, G.; Yang, Y.; Liu, Y.; Li, Y. Macromolecules 2007, 40, 7231. (127) Ning, Z.; Zhang, Q.; Wu, W.; Pei, H.; Liu, B.; Tian, H. J. Org. Chem. 2008, 73, 3791. (128) Scully, S. R.; McGehee, M. D. J.Appl.Phys. 2006, 100, 034907. (129) Muller, C.; Ferenczi, T. A. M.; Campoy, M.; Frost, J. M.; Bradley, D. D. C.; Smith, P.; Stingelin, N.; Nelson, J. Adv. Mater. 2008, 20, 3510. (130) Cates, N. C.; Gysel, R.; Dahl, J. E. P.; Sellinger, A.; McGehee, M. D. Chem. Mater. 2010, 22, 3543. (131) Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; Hal, P. A. v.; Janssen, R. A. J. Angew. Chem. Int. Ed.2003, 42, 3371. (132) Qin, C.; Zhou, M.; Zhang, W.; Wang, X.; Chen, G. Dyes and Pigments 2008, 77, 678. (133) Shimizu, M.; Mochida, K.; Katoh, M.; Hiyama, T. J. Phys. Chem. C. 2010, 114, 10004 (134) Wang, H.J.; Chan, L.H.; Chen, C.P.; Lin, S.L.; Lee, R.H.; Jeng, R.J. Polymer 2011, 52, 326. (135) Liou, G.S.; Hsiao, S.H.; Chen, H.W. J. Mater. Chem. 2006, 16, 1831. (136) Yang, X.; Lu, R.; Xu, T.; Xue, P.; Liu, X.; Zhao, Y. Chem Commun 2008, 453. (137) Badaeva, E. A.; Timofeeva, T. V.; Masunov, A. m.; Tretiak, S. J. Phys. Chem. A 2005, 109, 7276. (138) Mayerhoffer, U.; Deing, K.; Grus, K.; Braunschweig, H.; Meerholz, K.; Wurthner, F. Angew. Chem. Int. Ed. 2009, 48, 8776.
摘要: 含推拉電子基之共軛高分子,可藉由分子內電荷轉移效應調控不同的光電性質,並廣泛應用於開發新型高分子太陽能電池的材料。與傳統線型推/拉電子基之共軛高分子不同,本論文設計一系列側鏈型二維共軛聚噻吩 (polythiophene, PT) 衍生物,利用主鏈上共軛單元的不同來調整共軛側鏈的接枝密度。另外選擇不同推/拉電子能力之共軛側鏈,探討側鏈密度與共軛側鏈對二維共軛聚噻吩衍生物的光電物理、電化學性質與光伏特性的影響。本論文首先探討共軛側鏈的密度對聚噻吩衍生物的影響,接著比較二維共軛高分子與線型共軛高分子光電性質的差異;然後進一步導入不同推電子能力之芳香胺側鏈來調控聚噻吩衍生物之光電性質,最後也導入不同拉電子能力之共軛側鏈來調控聚噻吩衍生物之光電性質。茲詳細介紹如下: 1. 具有不同側鏈接枝密度之共軛側鏈型聚噻吩衍生物:分別使用Grignard Metathesis和Stille聚合成不同共軛枝鏈密度的聚噻吩衍生物,探討側鏈密度對共軛高分子的光電性質與碳球混摻後之奈米尺度混摻相容性的影響。共軛枝鏈分別使用三苯胺 (triphenylamine, TPA) 或咔唑(carbazole, Cz)衍生物,並使用噻吩 (thiophene, Th) 或苯基 (phenylene, Ph) 來延長共軛側鏈的共軛長度。使用Grignard Metathesis聚合可得到規則型 (regioregular, rr) 的聚噻吩衍生物,命名為rr-TPATh-PT;而使用Stille聚合方法得到無規則型 (random, r) 的聚噻吩衍生物,命名為r-TPATh-PT和r-CzPh-PT。研究發現9-位子取代的Cz共軛側鏈有較大的立體障礙,造成r-CzPh-PT有效共軛平面破壞分子較不易氧化,使其HOMO值變深;製備成高分子太陽能電池後,具有較佳的Voc值(0.85 V)。相較於rr-TPATh-PT,含低側鏈密度的r-TPATh-PT,能提供有效自由空間,與高比例PC61BM相混時,奈米尺度混摻相容性較佳。r-TPATh-PT/PC61BM (w/w=1:3)經熱處理優化後效率達1.75 %。結果發現具有適當的剛硬側鏈密度之r-TPATh-PT比規則排列之rr-TPATh-PT具有較佳的光伏特性。 2. 主鏈具有不同共軛架橋之共軛側鏈型聚噻吩衍生物:在聚噻吩衍生物上導入未取代共軛單元聯苯 (biphenyl, BP) ,二苯乙烯 (stilbene, St) 和二苯乙腈 (cyanostilbene, CNSt) 得到線型聚噻吩衍生物PTBP,PTSt和PTCNSt。並在側鏈導入TPA共軛側鏈,得到二維共軛聚噻吩衍生物PTBPTPA,PTStTPA 和PTCNStTPA。主鏈含有未取代共軛單元能稀釋側鏈取代基密度,降低主鏈因立體障礙的扭轉,使TPA側基有效共軛延長至主鏈上,因此可有效調整材料的HOMO能階。高分子間提供更多自由空間,增加聚噻吩衍生物與碳球混摻後之奈米尺度混摻相容性。結果顯示,含二維共軛聚噻吩衍生物比線型有較寬的吸收光譜,更能有效吸收太陽光,其中PTBPTPA與PC61BM (w/w=1:1) 混摻之太陽能電池開路電壓為0.86 V,光電轉換效率為0.38 %。 3. 側鏈含三苯胺或咔唑之二維共軛聚噻吩衍生物:在聚噻吩衍生物主鏈導入未取代共軛單元單噻吩 (thiophene, T) 與雙噻吩 (bithiophene, BT),而側鏈選擇不同推電子能力之TPA與Cz衍生物為共軛側鏈。於共軛側鏈末端導入tert-butyl得到tTPA與tCz,可進一步增加共軛側鏈在聚合過程中之溶解性。此系列二維共軛聚噻吩衍生物為PTtTPA,PBTtTPA,PTtCz和PBTtCz。聚噻吩衍生物的能隙也隨主鏈上共軛單元的延長而下降。因tTPA推電子能力較tCz強,使材料更能吸收太陽光,使材料HOMO能階變淺。而tCz比tTPA具有較大的氧化電位,使材料HOMO能階變深。整體而言, PBTtTPA之高分子太陽能電池有最佳的光電轉換效率 (PCE=1.94 %)。 4. 側鏈含2,2''亞甲基雙苯並噻唑或丙二腈側鏈之二維共軛聚芴-噻吩衍生物:於高分子側鏈導入拉電基2,2''亞甲基雙苯並噻唑dibenzo[d]thiazol-2-ylmethane (DBT)或丙二腈malononitrile (DCN),而共軛高分子主鏈含芴 (fluorene)與未取代共軛單元BT,得到PFDBT、PFDBTBT、PFDCNBT三種高分子。結果顯示,聚芴-噻吩衍生物因主鏈上共軛單元的延長而有效降低能隙。而DBT因結構較平面,能將有效共軛從側鏈延伸至聚芴-噻吩主鏈,完整發揮拉電子的效應使能隙下降。其中以PFDBTBT製備之高分子太陽能電池有最佳的光電轉換效率0.73 %,其開路電壓為0.62 V,短路電流密度為4.34 mA/cm2。 利用主鏈上共軛單元的選擇來調整側鏈密度,可提高與碳球混摻時的奈米尺度混摻相容性。進一步選擇適當的推/拉電子基為共軛側鏈,來調控二維共軛高分子的光電物理與電化學性質,得到理想的光伏特性。整體來說,二維共軛高分子比線型共軛高分子更能提升光伏特性。
Conjugated polythiphenes (PTs) have attracted significant scientific interest recently as their electronic and opto-electronic properties can be manipulated through intramolecular charge transfer (ICT). Such polymers may have potential in novel materials for polymer solar cell applications. Instead of typical linear conjugated polymers, we designed and synthesized two-dimensional (2D) PTs comprising conjugated pendants, adopting the side chain type ICT to modulate the properties and photovoltaic (PV) performance in this study. Herein, we summarized the systematic studies on some topics. First, we studied the bulky side chain density effect on 2D PTs, and then compared the properties between linear conjugated polymers and 2D PTs with conjugated pendants. Moreover, the influences of various electron donor/acceptor conjugated pendants on the photophysical, electrochemical and PV properties of 2D PTs were also addressed. The details of each topic are summarized as below: 1. Bulky side chain density effect on 2D PTs: 2D PTs with regioregular (rr) and random (r) configurations of PTs, namely rr-TPATh-PT, r-CzPh-PT, and r-TPATh-PT, featuring triphenylamine (TPA) and carbazole (Cz) as pendants along with thiophene (Th) and phenyl (Ph) to extend the conjugated length of the pendants were synthesized in this study. Due to the steric hindrance of bulky pendants, the effective conjugation length of 2D PTs could be curtailed, and consequently the HOMO energy level was lowered. Moreover, r-TPATh-PT with less bulky side-chain content provided sufficient free volume for PC61BM intercalation. Better compatibility was observed for the r-TPATh-PT/PC61BM-blend film as compared to the rr-TPATh-PT/PC61BM-blend film. After an annealed treatment, the PSC fabricated from the blend of r-TPATh-PT and fullerene derivative PC71BM (w/w =1:3), with a short-circuit current (Jsc) of 6.83 mA/cm2, Voc of 0.71 V and a power conversion efficiency (PCE) of 1.75 %. 2. 2D PTs with TPA pendants: In this part of study we synthesized three 2D PTs, namely PTBPTPA, PTStTPA, and PTCNStTPA, featuring three different conjugated units, biphenyl (BP), stilbene (St), and cyanostilbene (CNSt), respectively, in the polymer backbones, and conjugated triphenylamine/thiophene (TPATh) moieties on the side chains. In addition, we also synthesized three conjugated BP-, St-, and CNSt-based main-chain type conjugated polymers (PTBP, PTSt, and PTCNSt, respectively). The twisting of the main chain out of planar-conjugation in the presence of bulky moieties could be suppressed though the incorporation of rigid conjugation units (BP, St, CNSt) onto the backbone. Thereby high degrees of ICT were induced within the conjugated frameworks of the polymers, resulting in lower band gap energies and red-shift of the maximal UV-Vis absorption wavelengths. The photovoltaic performances of PSCs fabricated from blends of the 2-D PTs/PC61BM were superior to those of PSCs based on the main-chaintype polymer/PC61BM blends. The PTBPTPA/PC61BM (w/w=1:1) blend based PSC exhibited the highest Jsc (1.38 mA/cm2) and PCE (0.38%). 3. 2D-PTs with TPA and Cz: In this part of study we synthesized four 2D-PTs, namely PTtTPA, PBTtTPA, PTtCz and PBTtCz, featuring two different unsubstituted moieties—thiophene (T) and bithiophene (BT) —in the polymer backbones, and conjugated moieties, TPA and Cz each with a tert-butyl group on the side chain (tTPA and tCz, respectively). Due to the stronger donor strength of tTPA than that of tCz pendants, the improved electron transfer between polymer chains resulted in broader absorption spectra and lower energy band gaps of 2D-PTs. In addition to the higher oxidation potential of tCz than that of tTPA based 2D-PTs, lower HOMO levels of the studied PTtCz and PBTtCz were obtained. The highest PSC performance of PBTtTPA/PC61BM (w/w=1:1) blend based device reached PCE of 1.94 %. 4. 2D-PTs with dibenzo[d]thiazol-2-ylmethane (DBT) or malononitrile (DCN) pendants: In this part of study, we synthesized fluorene (F)/thiophene (T)-based conjugated polymers (PFTs), namely PFDBT, PFDBTBT and PFDCNBT, featuring unsubstituted moieties, BT in the polymer backbones, andconjugated moieties, DBT and DCN on the side chains. With longer BT conjugated moieties incorporated onto the main chains of 2D PFTs, we were able to increase planarity of polymer backbone and lower the energy band gaps. Due to the better planar structure of DBT pendants than that of DCN, the ICT effect resulting in lower energy band gap was observed for PFTs comprising DBT pendants. The best performance of photovoltaic device was obtained using PFDBTBT/PC61BM blend (w/w=1:1) as photo-energy conversion layer (PCE=0.73 %). These 2D conjugated polymers presented better PV performance than the main chain conjugated polymers. The desirable PV performance can be achieved by adjusting side chain density and incorporating suitable donor/acceptor conjugated pendants.
URI: http://hdl.handle.net/11455/3931
其他識別: U0005-3005201211440400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3005201211440400
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.