Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3941
標題: 圓柱形PLGA微血管支架製作與體外細胞培養
Fabrication of Cylindrical PLGA Capillary Scaffold and In Vitro Cell Culture
作者: 陳勇州
Chen, Yung-Chou
關鍵字: 聚乳酸-甘醇酸
Poly Lactide-co-Glycolides (PLGA)
生物可降解材料
組織工程支架
圓柱形結構
微血管
Biodegradable material
Tissue Engineering Scaffold
Cylindrical Structure
microvessels and Capillary
出版社: 生醫工程研究所
引用: [1] Lanza, RP, Langer, R, Vacanti, J, “Principles of Tissue Engineering Second Edition”, 2005. [2] Wang, W, Soper, SA, ”Bio-MEMS Technologies and Applications”, 2007. [3] Ma, PX, Elisseeff, J, “Scaffolding in Tissue Engineering”, 2006. [4] Dillow, AK, Lowman, AM, “Biomimetic Materials and Design”, 2002. [5] Ratner, BD, Hoffman, AS, Schoen, FJ, Lemons, JE, "BIOMATERIALS SCIENCE: An Introduction to Materials in Medicine 2nd Edition”, 2005. [6] Jiang, G., Attiya, S., Ocvirk, G., Lee, W. E., Harrison, D. J., “Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis,” Biosensors and Bioelectronics, 14(10-11), 861-869, 2000. [7] Polla, D. L., Krulevitch, P., Wang, A., Smith, G., Diaz, J., Mantell, S., Zhou, J., Zurn, S., Nam, Y., Cao, L., Hamilton, J., Fuller, C., “Gascoyne P. MEMS–based diagnostic Microsystems. Proceeding of the 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies,” Medicine & Biology, 41-44, 2000. [8] Alvarez, M., Calle, A., Tamayo, J., Lechuga, L. M., Abad, A., “Montoya A. Development of nanomechanical biosensors for detection of the pesticide DDT,” Biosensors and Bioelectronics, 18(5-6), 649-653, 2003. [9] Wang GJ, Hsu YF, Hsu SH, Horng RH, “JSR Photolithography Based Microvascular Fabrication and Cell Seeding. Biomedical Microdevices, 8(1):17-28, 2006. [10] Pan LC, Liang YC, Tseng FG, Leou KC, Chen LD, Lai YY. “A novel application of acoustic plate mode sensor in tissue regeneration, ”Proceedings of the IEEE-EMBS Special Topic Conference on Microtechnologies,” Medicine & Biology, 143-144, 2002. [11] Borenstein, J., Terai, H., King, K. R., Weinberg, E. J., Vacanti, J. P., “Microfabrication technology for vascularized tissue engineering,” Biomedical Microdevices, 4, 167-175, 2002. [12] Fidkowski, C., Kaazempur-Mofrad, M., Borenstein, J., Vacanti, J. P., Langer, R., Wang, Y., “Endothelialized Microvasculature Based on a Biodegradable Elastomer,” Tissue Engineering, 11, 302-309, 2005. [13] Wang, GJ, Chen, CL, Hsu, SH, and Chiang, YL, “Bio-MEMS Fabricated Artificial Vascular Network for Tissue Engineering,” Microsystem Technologies, 12(1-2):120-127, 2005. [14] Wang, GJ and Hsu, YF, “Structure Optimization of Microvascular Scaffolds” Biomedical Microdevices, 8(1):51-58, 2006. [15] Wang, GJ, Hsu, YF, Hsu, SH, Horng, RH, “JSR Photolithography Based Microvascular Fabrication and Cell Seeding” Biomedical Microdevices, 8(1):17-28, 2006. [16] Yang LJ, Chen YT, Kang SW, Wang YC, “Fabrication of SU-8 embedded microchannels with circular cross-section,” International Journal of Machine Tools & Manufacture 44:1109-1114, 2004. [17] Yi Y, Kang JH, Park JK, “Moldless electroplating for cylindrical microchannel fabrication,” Electrochemistry Communications, 7:913–917, 2005. [18] Vozzi G, Flaim C, Ahluwalia A, Bhatia S, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials, 24(14):2355-40, 2003. [19] Lu Y, Chen SC, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Advanced Drug Delivery Reviews, 1621-1633, 2004. [20] Wang, GJ, Hsueh, CC, Hsu, SH, Hung, HS, “Fabrication of PLGA Microvessel Scaffolds with Circular Microchannels Using Soft Lithography, Journal of Micromechanics and Microengineering, 17:2000-2005, 2007. [21] Park GE, Park K, Webster TJ, ”NaOH-Treated PLGA Scaffolds Allow for GreaterArticular Chondrocyte Functions,” Biomaterials, 26(16):3075-3082, 2005. [22] Savaiano, JK, and Webster, TJ, “Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites,” Biomaterials, 25:1205-1213, 2004. [23] Webster, TJ, Tong, Z, Liu, J, and Banks, MK, “Adhesion of Pseudomonas fluorescens onto nanophase materials,” Nanotechnology, 16:S449-S457, 2005. [24] Miller, DC, Haberstroh, KM, Webster, TJ, “PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion,“ J. of Biomedical Materials Research Part A, 678-684, 2006. [25] Min, BM, You, Y, Kim, JM, Lee, SJ, Park, WH, “Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts,” Carbohydrate Polymers, 57: 285-292, 2004. [26] 林晏成、王國禎、徐善慧、洪慧珊,”表面奈米結構之生物可降解人工微血管支架製作”, 2008年生物醫學工程科技研討會. [27] Borenstein, J.T., Tupper, M.M., Mack, P.J., Weinberg, E.J., Khalil, A.S., Hsiao, J., García-Cardeña, G.,” Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate,” Biomed Microdevices, 12:71–79, 2010. [28] http://zh.wikipedia.org [29] http://www.colorado.edu/intphys/Class/IPHY3430-200/image/ [30] 蘇建彰、陳建洋等人,“轉印模仁之奈米結構製作,”機械工業雜誌,269,44-55,2005。 [31] 林大鈞,”內皮細胞植覆於聚胺基甲酸酯人工小血管之評估”,國立中興大學化學工程系研究所碩士論文,2001
摘要: The main theme of tissue engineering is to seed specific cells in an appropriate scaffold and provide a suitable culture environment and adequate growth information to modulate the differentiation and proliferation of cells. Cell, scaffold, and growth information are the basic elements of tissue engineering. Scaffolds serve a number of purposes, as the foundation for cell attachment and migration, for the exchange of nutrients, and delivering and retaining of the cells and biochemical factors. One of the continuing, persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system can be a feasible solution to this problem. The main purpose of this study is to propose a novel method for the fabrication of pillared biodegradable microvessel scaffolds. The thermal reflow technique was first adapted to fabricate the semi-cylindrical photoresist master mold. A PDMS solution was then used in a casting process on the semi-cylindrical photoresist master mold to produce two semi-cylindrical PDMS microstructures. These two PDMS membranes were bonded together to form a replica mold consisting of circular microchannels. Finally, a PLGA solution was injected into the PDMS microstructure. After demolishing the PDMS replica mold, a pillared biodegradable microvessel scaffold can be obtained. Bovine endothelial cells (BECs) were carefully cultured in the pillared scaffold. Observations by a confocal microscopy showed that the BECs well grew in a pillared PLGA microvessel scaffold.
組織工程研究主要是將細胞植入於符合實驗設計的支架結構,並提供適當的環境及足夠的生長訊號來調節細胞於支架中之生長型態。細胞、支架、生物訊號為組織工程基本要素。其中組織支架目的乃是提供細胞生長及代謝的場所,使細胞能於支架上進行細胞貼附、代謝及分化。組織支架之人工微血管支架之相關研究乃是近年來逐漸引起重視的議題。本研究以生醫微機電的製程,利用物理熔融現象將光阻加熱至其玻璃轉移溫度並有效控制時間,使光阻的矩型截面熔融成半圓型;再搭配微流道系統設計,於半圓型光阻微結構模上預留微流體結構;接著以PDMS (Polydimethylsiloxane)分別澆鑄成型上、下層母模,以大氣電漿進行表面改質後,將上、下層PDMS母模對準結合成圓管型結構;最後再注入低黏滯係數的生物可降解聚合物PLGA完成圓柱支架製作。在體外培養實驗中,本研究成功將牛頸動脈內皮培養於支架表面,使細胞可以環繞於半圓柱型結構之外圍生長;內皮細胞不需染色即可觀察其生長情形,PLGA亦可於內皮細胞形成微血管之過程逐步降解。最後,將細胞染色且藉由3D 共軛焦螢光顯微鏡觀察,進一步驗證內皮細胞於半圓形微結構表面之貼附與生長。
URI: http://hdl.handle.net/11455/3941
其他識別: U0005-1308201001410500
Appears in Collections:生醫工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.