Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3950
標題: 不同奈米半球陣列支架應用於皮膚組織再生
The influence of scaffolds of different nano-hemisphere arrays on skin tissue regeneration
作者: 鍾一誠
Chung, I-Cheng
關鍵字: 低成本大量製造
Nanostructured scaffold
奈米模具
奈米結構支架
大鼠纖維母細胞
第一型膠原蛋白
Nanomolding
PLGA
Mouse fibroblast cell
Type I collagen
出版社: 生醫工程研究所
引用: [1] C. R. Martin, "Nanomaterials: A Membrane-Based Synthetic Approach," Science, vol. 266, pp. 1961-1966, 1994. [2] Y. Yamauchi, N. Suzuki, L. Radhakrishnan, and L. Wang, "Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials," The Chemical Record, vol. 9, pp. 321-339, 2009. [3] B. Y. Kim, J. T. Rutka, and W. C. Chan, "Nanomedicine," New England Journal of Medicine, vol. 363, pp. 2434-2443, 2010. [4] R. Subbiah, M. Veerapandian, and K. S Yun, "Nanoparticles: functionalization and multifunctional applications in biomedical sciences," Current medicinal chemistry, vol. 17, pp. 4559-4577, 2010. [5] G. Cao and D. Liu, "Template-based synthesis of nanorod, nanowire, and nanotube arrays," Advances in Colloid and Interface Science, vol. 136, pp. 45-64, 2008. [6] G. J. Wang and H. T. Chen, "Fabrication of 3D nano-structured ITO films by RF magnetron sputtering," Current Nanoscience, vol. 5, p. 297, 2009. [7] Y. Li, N. Koshizaki, and W. Cai, "Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices," Coordination Chemistry Reviews, vol. 255, pp. 357-373, 2011. [8] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New approaches to nanofabrication: molding, printing, and other techniques," Chemical Reviews-Columbus, vol. 105, pp. 1171-1196, 2005. [9] B. Teo and X. Sun, "From Top-Down to Bottom-Up to Hybrid Nanotechnologies: Road to Nanodevices," Journal of Cluster Science, vol. 17, pp. 529-540, 2006. [10] J. V. Barth, G. Costantini, and K. Kern, "Engineering atomic and molecular nanostructures at surfaces," Nature, vol. 437, pp. 671-679, 2005. [11] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint Lithography with 25-Nanometer Resolution," Science, vol. 272, pp. 85-87, 1996. [12] L. J. Guo, "Nanoimprint lithography: methods and material requirements," Advanced Materials, vol. 19, pp. 495-513, 2007. [13] S. Zankovych, T. Hoffmann, J. Seekamp, J. Bruch, and C. S. Torres, "Nanoimprint lithography: challenges and prospects," Nanotechnology, vol. 12, p. 91, 2001. [14] S. H. Hong, B. J. Bae, J. Y. Hwang, S. Y. Hwang, and H. Lee, "Replication of high ordered nano-sphere array by nanoimprint lithography," Microelectronic Engineering, vol. 86, pp. 2423-2426, 2009. [15] S. Zhao, H. Roberge, A. Yelon, and T. Veres, "New Application of AAO Template:  A Mold for Nanoring and Nanocone Arrays," Journal of the American Chemical Society, vol. 128, pp. 12352-12353, 2006. [16] W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, et al., "Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography," Microelectronic Engineering, vol. 86, pp. 2375-2380, 2009. [17] G. J. Wang, Y. C. Lin, C. W. Li, C. C. Hsueh, S. H. Hsu, and H. S. Hung, "Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates," Biomedical microdevices, vol. 11, pp. 843-850, 2009. [18] H. A. Pan, Y. C. Hung, C. W. Su, S. M. Tai, C. H. Chen, F. H. Ko, et al., "A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells," Nanoscale Research Letters, vol. 4, pp. 903-912, 2009. [19] L. Xia, B. Feng, P. Z. Wang, S. Y. Ding, Z. Y. Liu, J. Zhou, et al., "In vitro and in vivo studies of surface-structured implants for bone formation," International Journal of Nanomedicine, vol. 7, pp. 4873-4881, 2012. [20] A. R. Chandrasekaran, J. Venugopal, S. Sundarrajan, and S. Ramakrishna, "Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration," Biomedical materials, vol. 6, 2011. [21] C. Zhao, A. Tan, G. Pastorin, and H. K. Ho, "Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering," Biotechnology Advances, vol. 31, pp. 654-668, 2013. [22] M. Kukumberg, W. J. Lim, M. Yamamoto, and E. K. F. Yim, "Nano and microtopography enhance differentiation of human mesenchymal stem cell into endothelial-like cells for vascular repair," Journal of Tissue Engineering and Regenerative Medicine, vol. 6, pp. 143-144, 2012. [23] K. S. Park, K. J. Cha, I. B. Han, D. A. Shin, D. W. Cho, S. H. Lee, et al., "Mass-producible Nano-featured Polystyrene Surfaces for Regulating the Differentiation of Human Adipose-derived Stem Cells," Macromolecular Bioscience, vol. 12, pp. 1480-1489, 2012. [24] Y. Zhou, D. Yang, X. Chen, Q. Xu, F. Lu, and J. Nie, "Electrospun Water-Soluble Carboxyethyl Chitosan/Poly(vinyl alcohol) Nanofibrous Membrane as Potential Wound Dressing for Skin Regeneration," Biomacromolecules, vol. 9, pp. 349-354, 2007. [25] T. Velnar, T. Bailey, and V. Smrkolj, "The Wound Healing Process: an Overview of the Cellular and Molecular Mechanisms," The Journal of International Medical Research, vol. 37, pp. 1528-1542, 2009. [26] E. Proksch, J. M. Brandner, and J. M. Jensen, "The skin: an indispensable barrier," Experimental dermatology, vol. 17, pp. 1063-1072, 2008. [27] R. Mackie, E. Calonje, D. Burns, S. SM Breathnach, N. Cox, and C. Griffiths, "Rook''s textbook of dermatology," Burns T, Breathnach S, Cox N, Griffiths C, editors. Tumors of the Skin Appendages. 7th ed. London: Blackwell Publishing Company, pp. 1-34, 2004. [28] M. patel, The ageing skin: A broad view. [29] A. Martinez-Hernandes, "Repair, Regeneration, and fibrosis," in Essential Pathology, ed, pp. 47-59, 2000. [30] 曾岐元, "Inflammation and repair," in Current pathology, ed, pp. 54-57, 2003. [31] 林峰輝、徐善慧、黃琮濱、黃怡超、陳君侃、陳悅生、謝明發, 生物醫學工程導論, 2009. [32] 郭仲華, "微奈米壓印模具與技術之開發," 碩士, 化學工程研究所, 國立成功大學, 2007. [33] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Applied Physics Letters, vol. 67, pp. 3114-3116, 1995. [34] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 14, pp. 4129-4133, 1996. [35] J. Haisma, M. Verheijen, K. Van Den Heuvel, and J. Van Den Berg, "Mold‐assisted nanolithography: A process for reliable pattern replication," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 14, pp. 4124-4128, 1996. [36] H. Masuda, F. Hasegwa, and S. Ono, "Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution," Journal of the electrochemical society, vol. 144, pp. L127-L130, 1997. [37] G. Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin solid films, vol. 297, pp. 192-201, 1997. [38] G. Thompson, R. Furneaux, G. Wood, J. Richardson, and J. Goode, "Nucleation and growth of porous anodic films on aluminium," 1978. [39] X. Wang and G. R. Han, "Fabrication and characterization of anodic aluminum oxide template," Microelectronic Engineering, vol. 66, pp. 166-170, 2003. [40] K. Shimizu, K. Kobayashi, G. Thompson, and G. Wood, "Electron-beam-induced crystallization of anodic barrier films on aluminium: influence of incorporated anions," Journal of applied electrochemistry, vol. 15, pp. 781-783, 1985. [41] A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, vol. 84, pp. 6023-6026, 1998. [42] H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step," Science, vol. 268, pp. 1466-1468, 1995. [43] C. Liu, A. Datta, and Y. Wang, "Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces," Applied Physics Letters, vol. 78, pp. 120-122, 2001. [44] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, "Square and triangular nanohole array architectures in anodic alumina," Advanced Materials, vol. 13, pp. 189-192, 2001. [45] 林晃業, "微米級結構射出成型之研究," 碩士, 國立成功大學航空太空工程所, 2005. [46] J. E. Butler, "Enzyme-linked immunosorbent assay," Journal of Immunoassay, vol. 21, pp. 165-209, 2000. [47] S. K. Lower, "Atomic force microscopy Chapter 18," ed. [48] Y. Wu, Y. Hu, J. Cai, S. Ma, X. Wang, and Y. Chen, "The analysis of morphological distortion during AFM study of cells," Scanning, vol. 30, pp. 426-432, 2008. [49] B. Zaitsev, A. Durymanov, and V. Generalov, "Atomic Force Microscopy of the Interaction of Erythrocyte Membrane and Virus Particles," in Proc. Intern. Workshop" Scanning Probe Microscopy, pp. 211-213, 2002. [50] H. Lin, R. Bhatia, and R. Lal, "Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology," The FASEB Journal, vol. 15, pp. 2433-2444, 2001. [51] H. H. Shuai, C. Y. Yang, H. I. C. Harn, R. L. York, T. C. Liao, W. S. Chen, et al., "Using surfaces to modulate the morphology and structure of attached cells - a case of cancer cells on chitosan membranes," Chemical Science, vol. 4, pp. 3058-3067, 2013. [52] S. M. Prabhakarpandian B, Pant K, Kiani MF., "Microfluidic Device for Modeling Cell-Cell and Particale-Cell Interactions in the Microvasculatre," Microvasc Res. , vol. 8, pp. 210-220, 2011. [53] A. Kasaj, B. Willershausen, C. Reichert, A. Gortan-Kasaj, G. G. Zafiropoulos, and M. Schmidt, "Human periodontal fibroblast response to a nanostructured hydroxyapatite bone replacement graft in vitro," Archives of oral biology, vol. 53, pp. 683-689, 2008. [54] K. J. Yoo JY, Seo KS, Jeong YK, Lee HB, Khang G., "Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method.," Biomed Mater Eng. , vol. 15, pp. 279-288, 2005. [55] T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer, "Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients," Biomaterials, vol. 28, pp. 2175-2182, 2007. [56] T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer, "Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients," Biomaterials, vol. 28, pp. 2175-82, 2007. [57] T. Paragkumar N, D. Edith, and J.-L. Six, "Surface characteristics of PLA and PLGA films," Applied Surface Science, vol. 253, pp. 2758-2764, 2006. [58] D. H. Kim, S. Y. Park, Y. D. Park, J. H. Kim, K. Sun, G. H. Lee, et al., "Cellular responses to nanotopology of polymeric surfaces fabricated with AAO nanoimprinting," in Microtechnology in Medicine and Biology, 2005. 3rd IEEE/EMBS Special Topic Conference on, 2005, pp. 188-189. [59] M. J. Dalby, M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. G. Curtis, "Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography," Biomaterials, vol. 25, pp. 5415-5422, 2004. [60] R. Ogawa, "The Most Current Algorithms for the Treatment and Prevention of Hypertrophic Scars and Keloids," Plastic and Reconstructive Surgery, vol. 125, pp. 557-568, 2010. [61] W. B. Rockwell, I. K. Cohen, and H. P. Ehrlich, "Keloids and Hypertrophic Scars - a Comprehensive Review," Plastic and Reconstructive Surgery, vol. 84, pp. 827-837, 1989. [62] V. M. Tysseling-Mattiace, V. Sahni, K. L. Niece, D. Birch, C. Czeisler, M. G. Fehlings, et al., "Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury," Journal of Neuroscience, vol. 28, pp. 3814-3823, 2008.
摘要: 本研究提出一套能簡單且低成本地大量製造奈米結構支架的方法,並應用其奈米結構支架影響纖維母細胞增生和第一型蛋白質分泌,進而縮短傷口修復時間且達美化傷口效果。製程乃是以陽極氧化鋁膜背阻障層高規則性的奈米半球結構陣列作為電鑄模板,電鑄成形奈米半球結構陣列鎳模具。利用可重複使用的奈米結構鎳模具大量翻印FDA認可之生醫材料聚乳酸甘醇酸(poly(lactic-co-glycolic acid, PLGA))、聚乳酸(polylactide, PLA))和天然材料甲殼素(Chitosan)奈米結構支架,製造材料表面具有均勻分佈且大小一致之奈米半球結構陣列。細胞培養以大鼠纖維母細胞(L929)培養於奈米結構支架表面,長時間細胞培養可觀察細胞在第二、三天時,受到支架表面奈米結構影響而大量增生,並從不同大小奈米結構對細胞增生影響得知纖維母細胞喜好生長於118 nm直徑大小半球結構上。利用酵素免疫分析,檢測培養第二天支架上纖維母細胞之第一型膠原蛋白分泌量,由其第一型膠原蛋白分泌量佐證奈米結構對纖維母細胞影響,並進一步分析奈米結構支架對縮短傷口癒合時間和美化傷口的可能性。
In this study, we demonstrate a relatively easy and cost effective method for the fabrication of nanostructured scaffolds, to shorten the time a wound takes to heal. Various scaffolds consisting of nanohemisphere arrays of poly(lactic-co-glycolic acid) (PLGA), polylactide (PLA), and chitosan were fabricated by casting using a nickel (Ni) replica mold. The Ni replica mold is electroformed using the highly ordered nanohemisphere array of the barrier-layer surface of an anodic aluminum oxide (AAO) membrane as the template. Mouse fibroblast cells (L929s) were cultured on the nanostructured polymer scaffolds to investigate the effect of these different nanohemisphere arrays on cell proliferation. The concentration of collagen type I on each scaffold was then measured through ELISA to find the most effective scaffold for shortening the wound healing process. The experimental data indicates that the proliferation of L929 is superior when a nanostructured PLGA scaffold with a feature size of 118 nm is utilized.
URI: http://hdl.handle.net/11455/3950
其他識別: U0005-2207201315070000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2207201315070000
Appears in Collections:生醫工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.