Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3951
DC FieldValueLanguage
dc.contributor廖國智zh_TW
dc.contributorKuo-Chih Liaoen_US
dc.contributor.author楊鴻之zh_TW
dc.contributor.authorYang, Hung-Chihen_US
dc.contributor.other生醫工程研究所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T06:25:07Z-
dc.date.available2014-06-06T06:25:07Z-
dc.identifierU0005-0908201221203200en_US
dc.identifier.citation[1] 謝憲明,紫外光誘導光敏感微脂粒於藥物釋放之研究,國立暨南國際大學應用化學研究所碩士論文,2004。 [2] 何宜蓉,奈米科技:奈米金之臨床應用與發展,臨床藥學105冊,第二十六卷第四期,2010。 [3] 邱國斌,蔡定平,金屬表面電漿簡介,物理雙月刊,54-68,2006。 [4] 林麗娟,X光繞射原理及其應用,工業材料,100-109,1994。 [5] 戴怡德;許曉萍,奈米微粉粒徑量測。化工技術,144-146,2003。 [6] 呂晃志,N4 Plus submicron particle size analyzer 儀器原理與操作簡介,粒徑檢測課。 [7] L Zhang, FX Gu, JM Chan, AZ Wang, RS Langer and OC Farokhzad. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clinical Pharmacology and Therapeutics, 761–769, 2008. [8] Greish K., Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods in Molecular and Cellular Biology, 25-37, 2010. [9] Ganta S., Devalapally H., Shahiwala A., Amiji M., A review of stimuli-responsive nanocarriers for drug and gene delivery. Controlled Release, 187-204, 2008. [10] Vladimir Torchilin, Volkmar Weissig, Liposomes: a practical approach, Oxford University Press, 2003. [11] Needham D., Anyarambhatla G., Kong G., Dewhirst M. W., A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model, Cancer Research, 1197-201, 2000. [12] Hauck M. L., LaRue S. M., Petros W. P., Poulson J. M., Yu D., Spasojevic I., Pruitt A. F., Klein A.,Case B., Thrall D. E., Needham D., Dewhirst M. W., Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors, Clinical Cancer Research, 4004-4010, 2006. [13] Huang S. K., Stauffer P. R., Hong K., Guo J. W., Phillips T. L., Huang A., Papahadjopoulos D., Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes, Cancer Research, 2186-2191, 1994. [14] N. Aihara, S. Tazuma, G. Kajiyama., Hydrophilic bile salts and liposomes inhibit hydrophobic bile salt-induced release of glycoprotein by guinea-pig gall-bladder. Gastroenterology & Hepatology, 42-61, 1995. [15] Davidsen J., Jorgensen K., Andresen L.T., Mouritsen O.G., Secreted phospholipase A2 as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue. Biochimical and Biophysical Research Communications, 95–101, 2003. [16] Woodle M. C., Storm G., Long Circulating Liposomes: Old drugs, New Therapeutics, Springer-Verlag, 1998. [17] O''Shaughnessy J. A.,Pegylated liposomal doxorubicin in the treatment of breast cancer, Clinical Breast Cancer, 318-28, 2003. [18] Kikuchi H., Suzuki N., Ebihara K., Morita H., Ishii Y., Kikuchi A., Sugaya S., Serikawa T., Tanaka K., Gene Delivery Using Liposome Techology, Controlled Release, 269-277, 1999. [19] Chung T. W., Peng I. H., An Engineering Model to Characterize Oxygen Transfer Rates for Liposome Encapsulated Hemoglobin (LEH), Artificial Cell, Blood Substitutes and Immobilization Biotechnology, 389-398, 1998. [20] Phospholipids can be used to form artificial structures called liposomes, Britannica Online Encyclopedia, Encyclopadia Britannica. [21] G. V. Betageri, S. A. Jenkins and D. L. Parsons, Liposome Drug Delivery Systems, New York, 1993. [22] Vladimir Torchilin, Volkmar Weissig, Liposomes: a practical approach, Oxford University Press, 2003. [23] Lahore, Pakistan, Liposomes preparation methods, Pakistan Journal of Pharmaceutical Sciences, 65-77, 1996. [24] MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R., Small-volume extrusion apparatus for preparation of large, unilamellar vesicles, Biochimical and Biophysical Research Communications, 297-303, 1991. [25] Bibi S., Lattmann E., Mohammed A.R., Perrie Y.,Trigger release liposome systems: local and remote controlled delivery, J. Microencapsul, 262-276, 2012. [26] Zasadzinski J.A., Wong B., Forbes N., Braun G., Wu G., Novel methods of enhanced retention in and rapid targeted release from liposomes. Current Opinion in Colloid and Interface Science, 203-214, 2011. [27] Needham D., Anyarambhatla G., Kong G., Dewhirst M. W., A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model, Cancer Research, 197-201, 2000. [28] Hauck M. L., LaRue S. M., Petros W. P., Poulson J. M., Yu D., Spasojevic I., Pruitt A. F., Klein A., Case B., Thrall D. E., Needham D., Dewhirst M. W., Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors, Clinical Cancer Research, 4004-4010, 2006. [29] Huang S. K., Stauffer P. R., Hong K., Guo J. W., Phillips T. L., Huang A., Papahadjopoulos D., Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes, Cancer Research, 2186-2191, 1994. [30] David N., Mark D.,The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Advanced drug delivery reviews, 285-305, 2001. [31] M. Shinkai, M. Yanase, H. Honda, T. Wakabayashi, J. Yoshida and T. Kobayashi., Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes: In vitro Study,Japan Journal of Cancer Research, 1179-1183, 1996. [32] Metaxas, A. C. ,Meredith, R. J.: Industrial microwave heating, IEE, 1993. [33] R. P. Liburdy, R. L. Mafin., Microwave-stimulated drug release from liposomes, Radiation Research, 266-275, 1985. [34] Shinkai M., Suzuki M., Iijima S., Kobayashi T., Antibody-conjugated magnetoliposomes for targeting cancer cells and their application in hyperthermia ,Biotechnology and Applied Biochemistry, 21125-21137, 1995. [35] David H.T.,Oleg V. G., Jefferey J. W., Yuanjin R., Valerie C. A., Triggerable plasmalogen liposome:improvement of system effeciency, Biochimical and Biophysical Research Communications, 25-34, 1996. [36] Mor gan C.G., Bisby R.H., Johnson S.A., Mitchell A.C., Fast solute release from photosensitive liposomes: An alternative to ''caged'' reagents for use in biological systems. FEBS Letters, 113-125, 1995. [37] Aihara N., Tazuma S., Kajiyama G., Hydrophilic bile salts and liposomes inhibit hydrophobic bile salt-induced release of glycoprotein by guinea-pig gall-bladder, Journal of Gastroenterology and Hepatology, 42-46, 1995. [38] Venugopalan P., Jain S., Sankar S., Singh P., Rawat A., Vyas S.P., pH-sensitive liposomes: mechanism of triggered release to drug and gene delivery prospects, Pharmazie, 659-671, 2002. [39] Parente R.A., Nir S., Szoka F.C., Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry 29, 8720 ,1990. [40] Davidsen J., Jorgensen K., T. Andresen L., Mouritsen O.G., Secreted phospholipase A2 as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue, Biochimical and Biophysical Research Communications, 95–101, 2003. [41] Peter W., Sosaku I., Enzymes inside lipid vesicles: preparation, reactivity and applications, Biomolecular Engineering, 143-177, 2001. [42] David N., Mark W. D., The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors, Advanced drug delivery reviews, 285-305, 2001. [43] Daniel M. C., Astruc D., Gold nanoparticles: assembly,supramolecular chemistry, quantum-size-related properties,and applications toward biology, catalysis, and nanotechnology, Chemical Reviews, 293, 2004. [44] Ivanol E. Y., Suryanarayana C., Bryskin B. D., Materials Science and Engineering, A251:255~261, 1998. [45] Link S.,El-Sayed, M. A., Journal of Physical Chemistry B, 8410-8426, 1999. [46] Reetz, M., Helbig T. W., Journal of the American Chemical Society, 7401-7402, 1994. [47] Yin Y., Lu Y., Gates, B., Xia,Y., Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. Chemical Materials, 1146, 2001. [48] Jang J., Hyunkyou H., Fabrication of Hollow Polystyrene Nanospheres in Microemulsion Polymerization Using Triblock Copolymers, Langmuir, 18, 5613-5618, 2002. [49] Rena T. A., Yuan Z. Y., Su B. L., Chem. Physical Reviews Letters, 170, 2003. [50] El-Brolossy T.A., Abdallah T., Mohamed M.B., Abdallah S., Easawi K., Negm S., Talaat H., Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique, European Physical Journal Special Topics, 361–364, 2008. [51] Huang X., Jain P.K., El-Sayed I.H., and El-Sayed M.A., Plasmonic photothermal therapy using gold nanoparticles, Lasers in Medical Science, 217-228, 2008. [52] Kreibig U., Vollmer M., Optical Properties of Metal Clusters, Springer: Berlin, 1995. [53] Jain P. K., El-Sayed M. A., Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing, Nano Letters, 4347-4352, 2008. [54] Jain, P. K., Huang, W., El-Sayed, M. A. On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs. Nano Letters, 7, 2080–2088, 2007. [55] Chen C. F., Tzeng S. D., Chen H. Y., Lin K. J., Gwo S., Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling. Journal of American Chemical Society, 824-826, 2008. [56] Alexander O. G., Hugh H., R., Generating heat with metal nanoparticles, nanotoday, 30-38, 2007. [57] Terentyuk G.S., Maslyakova G.N., Suleymanova L.V., Khlebtsov N.G., Khlebtsov B.N., Akchurin G.G., Maksimova I.L., Tuchin V.V., Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy, Journal of Biomedical Optics, 16-21, 2009. [58] Jain P.K., Huang X., El-Sayed I.H., and El-Sayed M.A., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging,sensing, biology, and medicine, Accounts of Chemical Research, 1844-7366, 2008. [59] Chen, J., Wang, D., Xi, J., Au, L., Siekkinen, A., WarsenA., Li, Z. Y., Zhang, H., Xia, Y., Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 1318-1322, 2007. [60] Guohui W., Alexander M., Khant H.A., Caroline F., Wah C., Joseph A. Z., Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells, Journal of American Chemical Society, 130, 8175–8177, 2008. [61] Timothy S. T., Jennifer K. B., Marek R., Biodegradable Plasmon Resonant Nanoshells, Advances in Materials, 20, 2604–2608, 2008. [62] Leung S. J., Kachur X. M., Bobnick M. C., Romanowski Dr. M., Wavelength-Selective Light-Induced Release from Plasmon Resonant Liposomes. Advances Function Materials, 1113–1121,2011. [63] Lauri P., Timo L., Christoffer J., Marjo Y., Kyosti K., Arto U., Gold nanoparticles enable selective light-induced contents release from liposomes, Journal of Controlled Release, 122, 86–93, 2007. [64] Yu P., Sabine N., Annika L., Monika F., Fei W., Ulrich S., G nter S., Wolfgang B., Willi J. D., Size-Dependent Cytotoxicity of Gold Nanoparticles, Small, 1941-1949, 2007. [65] Nikhil R. J., Xiaogang P., Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals, Journal of American Chemical Society, 14280-14281, 2003. [66] Liu X., Atwater M., Wang J., Huo Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands, Colloid. Surface. Biological Biointerfaces, 3-7, 2007. [67] Willams and Carter, Transmission Electron Microscopy,Chapter 27. [68] Wong N.W., McMurdie H. F., Hubbard1 C. R., Mighell A. D., JCPDS-ICDD Research Associateship, National Institute of Standards and Technology, Gaithersburg, MD 20899-0001. [69] Jean D., Bruno D., Hntati-Ksibi O., Franck V., Jean-Claude H.,Fluoresecnce Recovery After Photobleaching. Methods in Molecular Biology, 313-327, 2001. [70] Gupta S., Seaberg K., Wallace M.J., Madoff D.C., Morello F.A. Jr, Ahrar K., Murthy R., Hicks M.E., Imaging-guided percutaneous biopsy of mediastinal lesions: different approaches and anatomic considerations. Radiographics, 763-86, 2005.en_US
dc.identifier.urihttp://hdl.handle.net/11455/3951-
dc.description.abstract本研究目的是要開發以奈米金粒子結合感溫微脂體形成可於活體中主動促進釋放的感光微脂體。此疏水金粒子是由氯化金以還原劑tetrabutylammonium borohydride (TBAB) 進行單相還原 (single-phase reduction),並由tri-n-octylphosphine (TOPO) 增加穩定性。生成之奈米金粒子具有均勻的粒徑,在穿透式電子顯微鏡觀測下分佈於6-8 nm,在動態雷射散射分析儀觀測下平均粒徑為9.78 nm。其晶格由X射線繞射圖譜和穿透式電子顯微鏡之電子繞射趨勢得知為面心立方體 (face-centered cubic) 具有 (1,1,1)、(2,0,0)、(2,2,0)、(3,1,1) 及 (2,2,2) 等晶向的晶面。感光微脂體是由含合成疏水金粒子的乾燥磷脂質薄膜在超音波震盪均質下經水合和過膜擠壓而得,在動態雷射散射分析儀觀測下平均粒徑為91.28 nm。在現有的光源中 (光照方式皆為連續式),50 W/cm2 寬頻可見光 (500-710 nm) 在對螢光指示劑產生輕微的光漂白作用 (< 20 % fluorescence溶液完全釋出所呈現的螢光強度) 下,能於40分鐘內有效釋放微脂體內容物超過90 % (經內容物自滅濃度fluorescence溶液釋出後稀釋而恢復螢光強度),而6.5 W/cm2 532 nm 綠光雷射激發對fluorescein沒有明顯的光漂白的跡象,但促進釋放效果較差 (~74 %)。zh_TW
dc.description.abstractThe aim of the research is to develop a photo-responsive liposome by incorporation of gold nanoparticles (AuNPs) for topical release in vivo. The hydrophobic gold nanopartice were synthesized from single-phase reduction of gold (III) chlorides by tetrabutylammonium borohydride (TBAB), and stabilized by tri-n-octylphosphine (TOPO). They have uniform particle size distribution around 6-8 nm inspected by transmission electron microscopy (TEM) or of the average value, 9.78 nm, by dynamic laser scattering (DLS). The crystal lattice of the nanostructure was found to be in the shape of face-centered cubic by X ray diffraction pattern and TEM electron diffraction pattern, with several atomic planes with miller index (1,1,1), (2,0,0), (2,2,0), (3,1,1), (2,2,2). The photo-thermal responsive liposome was synthesized by hydration of lipid thin film with AuNPs under sonication followed by extrusion. The DLS detected average diameter of AuNPs-incorporated liposome was 91.28 nm. Among the available light sources (all of them illuminated in continuous mode), 50 W/cm2 broadband illuminator (500-710 nm) and 6.5 W/cm2 532nm laser was found to efficiently release payload (>90% in 40 minutes indicated by restoration of fluorescence intensity with dilution of fluorescein in self-quench concentration) under slight photobleaching of fluorescin (<20% of indictor emission intensity) , while 6.5 W/cm2 532nm laser was found to release payload less efficiently (~50%) without causing evident photobleaching of fluorescin (<2% fluctuation).en_US
dc.description.tableofcontents誌謝.......................................................i 摘要......................................................ii Abstract.................................................iii 目錄..................................................... iv 表目錄...................................................vii 圖目錄..................................................viii 第一章:引言...............................................1 1.1 研究動機與背景........................................1 1.2 研究目的..............................................3 第二章:原理與文獻回顧.....................................4 2.1 微脂體主動促進釋放必需性..............................4 2.1.1 微脂體簡介..........................................5 2.1.2 主動促進釋放與療效..................................9 2.1.3 驅動微脂體釋放機制.................................11 2.2 奈米金粒子光熱效應與臨床應用.........................18 2.2.1 奈米金粒子特性.....................................18 2.2.2 奈米金粒子合成方法.................................20 2.2.3 奈米金粒子光熱效應.................................24 2.2.4 奈米金粒子與微脂體光熱釋放.........................35 第三章:實驗設計、材料與方法..............................43 3.1 實驗設計.............................................43 3.2 材料與儀器...........................................45 3.2.1 藥品與材料.........................................45 3.2.2 實驗儀器...........................................46 3.3 藥品配製.............................................49 3.3.1 製備金奈米粒子藥品配製.............................49 3.4 實驗方法與步驟.......................................50 3.4.1 奈米金粒子合成.....................................50 3.4.2 奈米金粒子吸收光譜測試.............................50 3.4.3 高解析度穿透式顯微鏡分析...........................51 3.4.4 X光晶格繞射測試....................................52 3.4.5 動態雷射散射粒徑分析測試 (DLS).....................53 3.4.6 最適光源分析.......................................54 3.4.7 各光源激發奈米金粒子升溫效率.......................55 3.4.8 光源對fluorescein光漂白實驗........................57 3.4.9 感光微脂體合成.....................................57 3.4.10 感光微脂體濃度分析................................58 3.4.11 感光微脂體釋放分析................................59 第四章:結果與討論........................................62 4.1 奈米金粒子特性分析...................................62 4.1.1 吸收光譜分析.......................................62 4.1.2 高解析度穿透式電子顯微鏡 (HR-TEM) 分析.............63 4.1.3 XRD晶格繞設測試....................................64 4.1.4 動態雷射散射粒徑分析...............................66 4.2 各光源激發奈米金溶液升溫實驗.........................67 4.2.1 UV寬頻光源激發分析.................................67 4.2.2 以藍光LED及綠光LED激發分析.........................67 4.2.3 以可見光寬頻光源激發分析...........................68 4.2.4 以光纖導引綠光雷射光源激發分析.....................70 4.3 分析fluorescein受光源激發光漂白現象..................70 4.3.1 UV寬頻光源對fluorescein光漂白現象..................70 4.3.2 可見光寬頻光源對fluorescein光漂白現象..............72 4.3.3 綠光雷射對fluorescein光漂白現象....................73 4.4 活體外感光微脂體釋放分析.............................73 4.4.1 可見光寬頻光源進行活體外感光微脂體釋放.............74 4.4.2 以光纖導引綠光雷射光源活體外感光微脂體釋放.........76 第五章:結論與未來方向....................................78 5.1 結論.................................................78 5.2 未來發展.............................................80 參考文獻..................................................82zh_TW
dc.language.isozh_TWen_US
dc.publisher生醫工程研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0908201221203200en_US
dc.subject奈米金粒子zh_TW
dc.subjectTopical releaseen_US
dc.subject感光微脂體zh_TW
dc.subject定點釋放zh_TW
dc.subjectGold nanoparticlesen_US
dc.subjectPhoto-thermal responsive liposomeen_US
dc.title以光纖激發促進含奈米金粒子光熱感應微脂體定點釋放之研究zh_TW
dc.titleTopical release of photo-thermal responsive liposome by application of gold nanoparticlesen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:生醫工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.