Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3955
標題: 以矽基板製備奈米結構
Fabrication of nanostructure on silicon substrate
作者: 傅昭倫
Fu, Chao-Lun
關鍵字: 陽極氧化
Anodization
硝酸銀蝕刻
多孔矽
反射率
太陽能電池
EMD
Respectively
Solar cells
出版社: 生醫工程研究所
引用: [1]G. Willeke, H. Nussbanumer, H. Bender, and E. Bucher, Solar Energy Materials and Solar Cells., 26, 345-346, 1992 [2]L. T. Canham., Applied Physics Letters, 57, 1046-1048, 1991 [3]A. Uhir, The Bell System Tech. J., 35, 333-347, 1956 [4]A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Boyer, Sensors and Actuators, 79, 189-193, 2000 [5]S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, phys. stat., 182, 541-546, 2000 [6]A. Richter, IEEE electron device letter, 12, 691-692, 1991 [7] M. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, A. G. Cullis.. Appl. Phys. Lett, 73, p.622, 1985 [8] P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, Thin Solid Film, p.297, 1997 [9] P. Vitanov, N. Tyutyundzhiev, M. Kamenova, V. Gantcheva, Proceedings of Solar World Congress, Harare, 1995 [10] G. Sun, Y. Li, Y. Lu, B. Khan, G. S. Tompa, Mater Res. Soc. Symp. Proc, 358, p.593, 1995 [11] S. Bastide, S. Strehlke, M. Cuniot, A. Boutry-Forveille, Q. N. Le, D. Sarti, C. Levy-Clement Proceeding of 13th EPS, p.1280, 2006 [12] A. Krotkus, K. Grigoras, V. Pacebutas, Sol. Energy Mater. Sol. Cells 45, p.267, 1997 [13] A. Rohatgy, P. Rai-Choudhury,. IEEE ED, 31, p.596, 1984 [14] R. Bilyalov, C. S. Solanki, J. Poortmans, O. Richad, H. Bender, M. Kummer, H. Von Kanel, Thin Solid Films, 403, p.170, 2002 [15] L. A. Balagurov, S. C. Bayliss, D. G. Yarkin, S. Ya. Andrushin, Kasatochkin, A. F. Orlov, Solid-state Electronic, 47, p.65, 2003 [16] B. Schwartz and H. R. Robbins, Chemical etching of silicon, Journal of the Electrochemical Society, 123, pp. 1903-1909, 1976 [17] A. F. Bogenschutz, W. Krusemark, K.H. Locherer,and W. Mussinger, Activation energies in the chemical etching of semiconductors inHNO3-HF-CH3COOH, Journal of the Electrochemical Society: Solid State, 114, pp.970-973, 1967 [18] M. D. B. Charlton, H. W. Lau, and G. J. Parker, High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures, IEE Colloquium on Microengineering Applications in Optoelectronics, 1-9, 1996 [19] A. Satoh, Formation of through-holes on silicon wafer by optical excitation electropolishing method, Japanese Journal of Applied Physics, 39, 378-386, 2000 [20] V. Lehmann and H. Foll, Formation mechanism and properties of electrochemically etched trenches in n-type silicon, Journal of the Electrochemical Society, 137, 653-658, 1990 [21] C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, Adv. Mater, 20, 3811–3815, 2008 [22] H. Chen, H. Wang, X. H. Zhang, C. S. Lee, and S.T. Lee, Nano Lett.,10(3),864–868, 2010 [23] S. Iijima, Nature, 354, p.56, 1991 [24] M. Law, J. Goldberger, P. D. Yang, Annu, Rev. Mater. Res, 34, p.83, 2004 [25] Heitmann, F. Muller, M. Zacharias, U. Gosele, Adv. Mate., 17, p.795, 2005 [26]J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci.Technol. B, 15, p.554, 1997 [27] J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science, 287, p.1471, 2000 [28] K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, J. Zhu, Angew. Chem. Int. Ed. , 44, p.2737, 2005 [29] A. Uhir, Bell System Tech. J., 35, 333, 1956. [30] C. Pickering, M. J. J. Beale, D. J. Robbins, P. J.Pearson and R. Greef, J. Phys. C, Solid State Phys., 17, 6553, 1984 [31] L. T. Canham, Applied Physics Letter, 57, 1046, 1990 [32] C. Tsai, K. H. Li, J. Sarathy, S. Shih, J. C.Campbell, B. K. Hance, J. M.White, Applied Physics Letter. 59, 2814, 1991 [33] L. Jia, S. L. Zang, S. P. Wong, H. Wilson, S. K. Hark, Z. F. Liu, S. M. Cai, Furthur Evidence for the Quantum-Confined Electrochemistry Model Of The Formation Mechanism of P(-)-Type Porous Silicon, Applied Physics Letter, 69, 22, p.3399~3401, 1996 [34] V. Lehmann and U. Gruning, Thin Solid Film, 297, 13, 1997 [35]D. R. Turner, J. Electrochem, 105, 402, 1958 [36] V. Lehmann and H. Foll, J. Electrochem, 137, 653, 1990 [37]T. Laurell, L. Wallman and J. Nilsson, J. Micromech. Microeng., 9, 369,1999 [38]J. A. Walker, J. Miceomech. Microeng., 10, 2000 [39]J. von Behren, L. Trubeskov and P. M. Fauchet, Appl. Phys. Lett., 66, 1662, 1995 [40]K. J. Chao, S. C. Kao, C. M. Yang, M. S. Hseu and T. G. Tsai, Electrochem. Solid-State Lett., 3, 489, 2000 [41]Axel Richer, IEEE electron device letter, 12, 691, 1991 [42]G. Willeke, H. Nussbaumer, H. Bender and E. Bucher, Solar Energy Materials and Solar cell, 26, 345, 1992 [43]T. Taiercio, M. Dihan, E. Massone, A. M. Gue, B. Fraisse and A. Foucaran, Thin Solid Film, 255, 310, 1995 [44]R. Angelucci, A. Poggi, L. Dori, G. C. Cadinali, A. Parisini, A. Tagliani, M. Mariasaldi and F. Cavani, Sens. Actuators A, 74, 1, 1999 [45]C. M. A. Ashruf, P. J. French, P. M. Sarro, R. Kazinczi, X. H. Xia and J. J. Kelly, J. Micromech. Microeng., 10, 505, 2000 [46] Jia Chuan Lin and Kuo Min Huang, Microstructure analysis and photoelectronic properties of porous silicon, Hua Kang Journal of Engineering Chinese Culture University, 2, 137-144, 2007 [47] T. Unagami, K. Kato, Trans. IEE Jap., 98(A), 15, 1978 [48] C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, "Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature," Adv. Mater., 20, 3811–3815, 2008 [49] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, "Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles," Advanced Functional Materials, 16, 387-394, 2006 [50] V. Lehmann, and U. Gosele, Appl. Phys. Lett., 58, 856, 1991 [51] S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, Sol. Energy, 80, 701, 2006 [52] K. Drabczkk, P. Panek, and M. Lipiński, Sol. Energy Mater. Sol. Cells, 76, 545, 2003 [53] O. Nichiporuk, A. Kaminski, M. Lemiti, A. Fave, S. Litvinenko, and V. Skryshevsky, Thin Solid Films, 511–512, 248, 2006 [54] B. Űnal, and S. C. Bayliss, J. Appl. Phys. 80, 3532, 1996 [55] C. W. Lin, C. F. Teng, Y. L. Chen, J. Phys. & Chemi Solids, 69, 641, 2008 [56] S. Adachi, and T. Kubota, Electrochem. Solid–State Lett. 10 (2), H39, 2007 [57] B. Gelloz, and N. Koshida, J. Apply. Phys., 88. 4319, 2000 [58] X. L. Wu, G. G. Su, Y. Gu, N. Tang, T. Gao, and X. M. Bao, Appl. Phys. Lett. 74, 827, 1999 [59] L. T. Canham, Appl. Phys. Lett., 57, 1046, 1990 [60] A. Krotkus, K. Grigoras, V. Pacebutas, I. Baraony, E. Vazsonyi, M. Fried, J. Szlufcik, J. Nijs, and C. Levy–Clement, Sol. Energy Mater. Sol. Cells 45, 267, 1997 [61] S. Strehlke, S. Bastide, J. Guillet, and C. Levy–Clement, Mater. Sci. Eng., B 69–70, 81, 2000 [62] C. C. Striemer and P. M. Fauchet, Appl. Phys. Lett. 81, 2980, 2002 [63] 黃俊達,卓其何,“V 型多孔矽/n–型矽基板異質接面的光電特性探討,”奈米通訊, 16(2), 19-23, 2009 [64] R. B. Bergmann, C. Berge, T. J. Rinke, J. Schmidt, and J. H. Werner, Sol. Energy Mater. Sol. Cells 74, 213, 2002 [65] D. Majumader, S. Chatterjee, M. Dhar, S. K. Dutta, and H. Saha, Sol. Energy Mater. Sol. Cells 77, 51, 2003 [66] X. G. Zhang, S. D. Collins, and R. L. Smith, Journal of the Electrochemical Society, 136, 1561-1565, 1989 [67] X. G. Zhang, Journal of the Electrochemical Society, 138, 3750-3756, 1991
摘要: 本研究以陽極氧化與無電鍍金屬沉積法二種技術,進行矽基表面奈米化製程,期盼能由製程參數之最佳化著手,開發低成本且能大面積生產之矽基奈米化技術,主要應用於太陽能電池之抗反射層結構。 陽極氧化矽基表面奈米化製程是藉由改變電流與氫氟酸(HF)電解溶液之濃度而在矽的表面上產生蝕刻的作用,也就是在矽晶片上施加正偏壓,使蝕刻液氫氟酸與矽原子反應,並在表面形成凹槽,隨著時間增加,凹槽會越來越深並往下延伸形成多孔結構。本研究以N-type高阻(NH)、N-type低阻(NL)、P-type高阻(PH)、P-type低阻(PL)等四種矽晶圓為材料,在不同參數下進行陽極氧化蝕刻。實驗結果驗證陽極氧化蝕刻的確可產生奈米結構,經反射率分析比較,PH矽晶圓經陽極氧化蝕刻後之抗反射率較其他三種矽晶圓較佳。 無電鍍金屬沉積法則是先將矽材浸於硝酸銀及含水氫氟酸的溶液中,硝酸銀由矽原子取得電子還原成銀粒子,矽基材則被氧化成氧化矽層,氧化矽層又被含水氫氟酸蝕刻移除,產生由矽材之表面向內凹陷之奈米溝槽,表層之銀粒子則可以硝酸溶液移除。實驗結果驗證硝酸銀蝕刻確可在較簡單製程與較低成本下於矽晶圓產生奈米孔洞,四種不同矽晶材料中,以PH蝕刻30分鐘效果最顯著,奈米孔洞結構之能帶介於1.7-1.8eV間,可吸收短波長之光波;以此奈米孔洞結構製作單晶矽太陽能電池之轉換效率約是15-16%,多晶矽之轉換效率為14-15%。
In this study, the anodic anodization and the electroless metal deposition (EMD) were utilized for the fabrication of nano-structure on the surface of silicon. It is desired that a low-cost mass production technique for the fabrication of nanoporous silicon can be developed. It is also desired that the proposed method can be further applied to the fabrication of the high efficient anti-reflection layer of a solar cell. In the anodic anodization, the applied voltage and the concentration of the hydrofluoric acid (HF) can be controlled to enable efficient down-etching on the surface of a silicon substrate. The molecules of HF are forced to react with the silicon atoms to produce down-etching pores on the silicon surface when a positive bias voltage is applied. Four types of silicon, N-type high resistance (NH), N-type low resistance (NL), P-type high resistance (PH), and P-type low resistance (PL) were used for the anodic anodization experiments. Experimental results indicate that porous silicon could be produced through anodic anodization. It was also observed that the porous PH silicon have better anti-reflection efficiency than the other three materials. In the EMD process, the silver ions form the silver nitrate solution reduce to silver atoms by obtaining electrons from the silicon atoms such that the silicon atoms are oxidized to a SiO2 layer. The SiO2 layer is then removed by the HF solution to produce a porous structure on the silicon surface with Ag particles on its top. The Ag particles can be removed by nitric acid. Experimental results demonstrate that the EMD method can fabricate good anti-reflection porous structure on silicon under a relative simple and low-cost process. Among these four materials used in this study, the PH material that was etched under EDM for 30 min can reveal a better anti-reflection property. Its energy gap was measured to be around 1.7-1.8 eV. The energy conversion efficiencies of the single crystal and the multi crystal solar cells made of the EMD etched porous silicon were 15-16% and 14-15%, respectively.
URI: http://hdl.handle.net/11455/3955
其他識別: U0005-1707201214162000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707201214162000
Appears in Collections:生醫工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.