Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3963
標題: 活體中光纖激發促進含奈米金粒子光熱感應微脂體定點釋放
In vivo fiber-optic triggered release of photo-thermal responsive liposome with gold nanoparticles
作者: 黃惠鈴
Huang, Huei-Ling
關鍵字: 光纖耦合促進釋放
Topical release triggered by fiber-coupled laser excitation
光熱感應微脂體
奈米金粒子
表面電漿共振效應
螢光自滅現象
Photo-thermal responsive liposome
Gold nanoparticles (AuNPs)
Surface plasmon resonance (SPR)
Concentration quenching or Self-quenching of fluorescein
出版社: 生醫工程研究所
引用: [1] Y.-Y. Qin, H. Li, X.-J. Guo, X.-F. Ye, X. Wei, Y.-H. Zhou, X.-J. Zhang, C. Wang, W. Qian, J. Lu, J. He, Adjuvant chemotherapy, with or without taxanes, in early or operable breast cancer: a meta-analysis of 19 randomized trials with 30698 Patients, PLoS one, 6 (2011) e26946. [2] R. Kim, A. Osaki, T. Toge, Current and future roles of neoadjuvant chemotherapy in operable breast cancer, Clin. Breast Cancer, 6 (2005) 223-232. [3] S.M. Swain, Chemotherapy: updates and new perspectives, The oncologist, 16 (2011) 30-39. [4] E.B. Dickerson, E.C. Dreaden, X. Huang, I.H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, M.A. El-Sayed, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett., 269 (2008) 57-66. [5] H. Gurney, How to calculate the dose of chemotherapy, Br. J. Cancer, 86 (2002) 1297-1302. [6] R.J. Hunter, M.A. Navo, P.H. Thaker, D.C. Bodurka, J.K. Wolf, J.A. Smith, Dosing chemotherapy in obese patients: actual versus assigned body surface area (BSA), Cancer Treat. Rev., 35 (2009) 69-78. [7] L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, O. Farokhzad, Nanoparticles in medicine: therapeutic applications and development., Clin. Pharmacol. Ther., 83 (2008) 761-769. [8] M.E.R. O''Brien, Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil") versus conventional doxorubicin for first-line treatment of metastatic breast cancer, Ann. Oncol., 15 (2004) 440-449. [9] A.N. Gordon, J.T. Fleagle, D. Guthrie, D.E. Parkin, M.E. Gore, A.J. Lacave, Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan, J. Clin. Oncol., 19 (2001) 3312-3322. [10] O. Lyass, B. Uziely, R. Ben-Yosef, D. Tzemach, N.I. Heshing, M. Lotem, G. Brufman, A. Gabizon, Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma, Cancer, 89 (2000) 1037-1047. [11] S.A. Abraham, D.N. Waterhouse, L.D. Mayer, P.R. Cullis, T.D. Madden, M.B. Bally, The liposomal formulation of doxorubicin, Meth. Enzymol., 391 (2005) 71-97. [12] N. D.Santos, C. Allen, A.M. Doppen, M. Anantha, K.A. Cox, R.C. Gallagher, G. Karlsson, K. Edwards, G. Kenner, L. Samuels, M.S. Webb, M.B. Bally, Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding, Biochim. Biophys. Acta, 1768 (2007) 1367-1377. [13] A.A. Gabizon, Liposome circulation time and tumor targeting: implications for cancer chemotherapy, Adv. Drug Deliv. Rev. , 16 (1995) 285-294. [14] J.A. Zasadzinski, B. Wong, N. Forbes, G. Braun, G. Wu, Novel methods of enhanced retention in and rapid, targeted release from liposomes, Curr. Opin. Colloid. Interface. Sci., 16 (2011) 203-214. [15] M.L. Hauck, S.M. LaRue, W.P. Petros, J.M. Poulson, D. Yu, I. Spasojevic, A.F. Pruitt, A. Klein, B. Case, D.E. Thrall, D. Needham, M.W. Dewhirst, Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors, Clin. Cancer Res., 12 (2006) 4004-4010. [16] S.K. Huang, P.I. Stauffer, K. Hong, J.W. H. Guo, T.L. Phillips, A. Huang, D. Papahadjopoulos, Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes, Cancer Res., 54 (1994) 2186-2191. [17] M.C. Frost, M.E. Meyerhof, Implantable chemical sensors for real-time clinical monitoring: progress and challenges, Analytical techniques, (2002) 633-641. [18] S.K. Huang, P.I. Stauffer, K. Hong, J.W.H. Guo, T.L. Phillips, A. Huang, D. Papahadjopoulos, Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes, Cancer Res., 54 (1994) 2186-2191. [19] J. O''Kelly , K.-C. Liao, W. Clifton, D. Lu, P. Koeffler, G. Loeb, Percutaneous fiber-optic sensor for the detection of chemotherapy-induced apoptosis in vivo, Proc. SPIE 7555,Advanced Biomedical and Clinical Diagnostic Systems VIII, (2010) 75551H. [20] S. Bibi, E. Lattmann, A.R. Mohammed, Y. Perrie, Trigger release liposome systems: local and remote controlled delivery?, J. Microencapsul., 29 (2012) 262-276. [21] G. Orellana, D. Haigh, New trends in fiber-optic chemical and biological sensors, Curr. Anal. Chem., 4 (2008) 273-295. [22] D. Marazuela, M.C. Moreno-Bondi, Fiber-optic biosensors--an overview, Anal. Bioanal. Chem., 372 (2002) 664-682. [23] 范書毓, 以光纖螢光感測定量細胞族群或組織階層的活動, 國立中興大學生醫工程研究所學位論文, (2013) 1-66. [24] N.R. Jana , X. Peng, Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals, J. Am. Chem. Soc., 125 (2003) 14280-14281. [25] 楊鴻之, 以光纖激發促進含奈米金粒子光熱感應微脂體定點釋放之研究, 國立中興大學生醫工程研究所學位論文, (2012) 1-104. [26] A. Imhof, M. Megens, J.J. Engelberts, D.T.N. de Lang, R. Sprik, W.L. Vos‡, Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres, J. Phys. Chem. B, 103 (1999) 1408-1415. [27] P. Agostinis, K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti, S.O. Gollnick, S.M. Hahn, M.R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B.C. Wilson, J. Golab, Photodynamic therapy of cancer: an update, CA Cancer J Clin., 61 (2011) 250-281. [28] E.İ. Altınoğlu, J.H. Adair, Near infrared imaging with nanoparticles, Nanomedicine and Nanobiotechnology, 2 (2010) 461-477. [29] D. Needham, G. Anyarambhatla, G. Kong, M.W. Dewhirst, A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model, Cancer Discov., 60 (2000) 1197-1201. [30] D. Needham, M.W. Dewhirst, The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors, Adv. Drug Deliv. Rev., 53 (2001) 285-305. [31] M. Shinkai, M. Yanase, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi, Intracellular hyperthermia for cancer using magnetite cationic liposomes: In vitro study, Jpn. J. Cancer Res., 87 (1996) 1179-1183. [32] A.M. Derfus, G. von Maltzahn, T.J. Harris, T. Duza, K.S. Vecchio, E. Ruoslahti, S.N. Bhatia, Remotely triggered release from magnetic nanoparticles, Adv. Mater. , 19 (2007) 3932-3936. [33] C.G. Morgan, R.H. Bisby, S.A. Johnson, A.C. Mitchell, Fast solute release from photosensitive liposomes: an alternative to ''caged'' reagents for use in biological systems, FEBS J., 375 (1995) 113-116. [34] R.P. Liburdy, R.L. Magin, Microwave-stimulated drug release from liposomes, Radiation Research, 103 (1985) 266-275. [35] E. Roux, C. Passirani, S. Scheffold, J.-P. Benoit, J.-C. Leroux, Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes, J. Control. Release., 94 (2004) 447-451. [36] M. Zignani , D.C. Drummond , O.Meyer, K. Hong, J.-C. Leroux, In vitro characterization of a novel polymeric-based pH-sensitive liposome system, Biochim. Biophys. Acta, 1463 (2000) 383-394. [37] J.J. Sudimack , W. Guo , W. Tjarks , R.J. Lee, A novel pH-sensitive liposome formulation containing oleyl alcohol, Biochim. Biophys. Acta, 1564 (2002) 31– 37. [38] J. Davidsen, K. Jorgensen, T.L. Andresen, O.G. Mouritsen, Secreted phospholipase A2 as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue, Biochim. Biophys. Acta, 1609 (2003) 95– 101. [39] J. Banerjee, A.J. Hanson, B. Gadam, A.I. Elegbede, S. Tobwala, B. Ganguly, A.V. Wagh, W.W. Muhonen, B.Law, J.B. Shabb, D.K. Srivastava, S. Mallik, Release of liposomal contents by cell-secreted matrix metalloproteinase-9, Bioconjug. Chem., 20 (2009) 1332–1339. [40] S.L. Huang, R.C. MacDonald, Acoustically active liposomes for drug encapsulation and ultrasound-triggered release, Biochim. Biophys. Acta, 1665 (2004) 134-141. [41] C. Oerlemans, R. Deckers, G. Storm, W.E. Hennink, J.F. Nijsen, Evidence for a new mechanism behind HIFU-triggered release from liposomes, J. Control. Release, 168 (2013) 327-333. [42] M.M. Mady, M.A. Allam, The influence of low power microwave on the properties of DPPC vesicles, Phys. Med., 28 (2012) 48-53. [43] L. Paasonen, T. Laaksonen, C. Johans, M. Yliperttula, K. Kontturi, A. Urtti, Gold nanoparticles enable selective light-induced contents release from liposomes, J. Control. Release, 122 (2007) 86-93. [44] T.S. Troutman, S.J. Leung, M. Romanowski, Light-induced content release from plasmon-resonant liposomes, Adv. Mater., 21 (2009) 2334-2338. [45] G. Wu, A. Mikhailovsky, H.A. Khant, C. Fu, W. Chiu, J.A. Zasadzinski, Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells, J. Am. Chem. Soc., 130 (2008) 8175–8177. [46] S.J. Leung , M. Romanowski, NIR-activated content release from plasmon resonant liposomes for probing single-cell responses, ACS Nano, 6 (2012) 9383–9391. [47] 陳進庭, 林郁欣, 光動力醫學的原理及其應用發展, 光速雙月刊, (2006.05) 19-23. [48] 王尹怡, 莊銀清, 淺談光化學動力療法(photodynamic therapy)在感染疾病上的運用, 感染控制雜誌, 14. [49] S. Choudhary, K. Nouri, M.L. Elsaie, Photodynamic therapy in dermatology: a review, Lasers Med. Sci., 24 (2009) 971-980. [50] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104 (2004) 293-346. [51] 曾賢德, 金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作, 物理雙月刊, 32 (2010.4) 126-135. [52] W. Wong-Ng, H.F. McMurdie, C.R. Hubbard, A.D. Mighell, JCPDS-ICDD research associateship (cooperative program with NBS/NIST), J. Res. Natl. Inst. Stand. Technol., 106 (2001) 1013–1028. [53] 鄭信民, 林麗娟, X光繞射應用簡介, 工業材料雜誌, (2002) 100-108. [54] 林麗娟, X光繞射原理及其應用, 工業材料雜誌, (1994) 100-109. [55] 王盈錦, 林峰輝, 胡孝光, 黃玲惠, 黃義侑, 蔡瑞瑩, 闕山璋, 生物醫學材料 合記出版社, 2002. [56] A.G. Guy, Essentials of Materials Science, McGraw-Hill Companies, Tyler, Texas, United States, 1976. [57] C. Ohms, R.C. Wimpory, D.E. Katsareas, A.G. Youtsos, NET TG1: residual stress assessment by neutron diffraction and finite element modeling on a single bead weld on a steel plate, Int. J. Pressure Vessels Pip. , 86 (2009) 63-72. [58] M.B. Yatvin, J.N. Weinstein, W.H. Dennis, R. Blumenthal, Design of liposomes for enhanced local release of drugs by hyperthermia, Science, 202 (1978) 1290-1293. [59] E.E. Paoli, D.E. Kruse, J.W. Seo, H. Zhang, A. Kheirolomoom, K.D. Watson, P. Chiu, H. Stahlberg, K.W. Ferrara, An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: importance of formulation, J. Control. Release, 143 (2010) 13-22. [60] M.H. Gaber, K.L. Hong, S.K. Huang, D. Papahadjopoulos, Thermosensitive sterically stabilized liposomes—formulation and in-vitro studies onmechanismof doxorubicin release by bovine serum and human plasma, PHARM. RES., 12 (1995) 1407–1416. [61] S. Sanjay , M. Natavarlal, R. Mukesh, Liposomes are colloidal, vesicular structures composed of one or more lipid bilayers surrounding an equal numbers of aqueous compartments. Since, 1960''s pharmaceutical researchers used liposomes as therapeutic tools in medicinal field., Latest Reviews, 4 (2006). [62] Wako, LabAssay TM Phospholipid in: Choline Oxidase DAOS method. [63] W.I. Goldburg, Dynamic light scattering, Am. J. Phys., 67 (1999) 1152. [64] M. Sartor, Dynamic light scattering, University of California–San Diego., (2003). [65] D.B. Williams , C.B. Carter, Transmission electron microscopy, Springer US, 1996. [66] N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan, Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy, ACS Nano, 3 (2009) 2547-2556. [67] S. Keren , O. Gheysens , C.S. Levin, S.S. Gambhir, A comparison between a time domain and continuous wave small animal optical imaging system, IEEE Trans Med Imaging. , 27 (2008) 58-63. [68] E.E. Graves, D. Yessayan, G. Turner , R. Weissleder, V. Ntziachristos, Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography., J Biomed Opt., 10 (2005) 044019. [69] C.-A. J. Lin, T.-Y. Yang, C.-H. Lee, S.H. Huang, M. Zanella, J.K. Li, J.-L. Shen, H.-H. Wang, W.H. Chang, Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications, ACS Nano, 3 (2009) 395-401.
摘要: 本研究探討以200 μm光纖導引65 mW 532 nm雷射激發光至活體內定點,主動促進含奈米金粒子光熱感應微脂體的釋放條件與趨勢,以期能改善微脂體於活體中定點釋放的效率。此微脂體包覆自滅濃度螢光指示劑 75 mM fluorescein後,經光激發後藉由fluorescein釋放後稀釋造成的螢光強度上昇(自滅現象解除)來做為了解其定點釋放的趨勢。在活體外仿生水浴環境下,含疏水性奈米金粒子光熱感應微脂體在40分鐘達到約74.53 ±1.63 %的釋放率,高於對照組的不含奈米金粒子微脂體14.53±3.17 %的釋放率。在裸鼠融植瘤模型活體實驗中,經活體螢光影像系統(IVIS)測得擴散趨勢得知,純螢光物擴散速率較快,於注入後10分鐘內癌組織位置平均螢光強度(濃度指示)銳減至20%以下;包覆螢光物光熱感應微脂體因擴散速率較慢,於注入後於癌組織位置能維持強度(濃度指示)>40%達30分鐘以上,且因拮抗作用中訊號上升的趨勢(螢光物由癌組織中心擴散至近體表處增加IVIS訊號)大於下降的趨勢(螢光物擴散降低濃度減弱IVIS訊號),於注入後20-40分鐘間呈現每像數平均訊號值大於初始訊號值的情形。進一步以自滅濃度(75mM)與最強螢光濃度(1mM) fluorescein包覆光熱感應微脂體直接於腫瘤植入物環境內光纖導光激發促進釋放的差異,自滅濃度組照光後整體螢光強度和面積均大幅上升(3-10倍),而最強螢光濃度組照光後則呈現逐步下降的趨勢,確認導光主動促進釋放的成效(而非螢光物由深層移至表面造成的螢光上升)。最後比較含金微脂體與不含金微脂體受光纖導光激發釋放的差異,測得含奈米金粒子受激發釋放程度高於對照組達190-260%,證實奈米金粒子能發揮將光能轉為熱能,有助微脂體因溫度變化達到增加通透度相變化的臨界溫度,促進包覆螢光物釋出效率。
The aim of the research is to investigate the strategy in applying fiber-optic triggered release of photothermal responsive gold nanoparticles (AuNPs) embedded liposome with 200 μm fiber and 65 mW 532 nm for topical release in vivo. The pattern of topical release triggered by laser excitation conveyed through optical fiber was monitored by fluorescence increase from dilution of 75mM fluorescein encapsulated in liposome. The AuNPs embedded liposome showed more efficient triggered release (74.53 ±1.63 % in 40 minutes) than liposome without AuNPs (14.53±3.17 %) in vitro (37℃water bath). In nude mice xenografts study, the free fluorophore exhibited more rapid diffusion and caused significant signal decay (average pixel intensity dropped to less than 20 % of pixel with maximal intensity in 10 minutes) around tumor region under fluorescent imaging monitoring; the fluorophore encapsulated liposome demonstrated slower diffusion and maintaining average pixel intensity more than 40 % of pixel with maximal intensity for more than 30 minutes, with average intensity raise between 20 to 40 minutes due to the signal increase tendency (fluorophore administrated in the center of tumor diffused to near skin surface area converting stronger IVIS signal) surpassing the declining tendency (dilution of fluorophore by diffusion) in the antagonistic actions. The topical release triggered by laser excitation conveyed through optical fiber was confirmed by observing significant expansion of fluorophore covering area and raise of average intentsity (3-10 folds) from 75mM fluorescein encapsulated liposome; while gradually decay of both indice from 1 mM fluorescein encapsulated liposome (it verified that the light triggered fluorescence increase resulting from fluorophore release, and not fluorophore administrated in the center of tumor diffused to near skin surface area converting stronger IVIS signal). The AuNPs is proved to facilitate the conversion of light energy into heat with AuNPs embedded liposome showing 190-260% higher efficiency in triggered release than liposome without AuNPs.
URI: http://hdl.handle.net/11455/3963
其他識別: U0005-2008201320134100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201320134100
Appears in Collections:生醫工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.