Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3964
標題: 特性化描述與檢測前列腺癌症之矽奈米線場效電晶體
Characterization and Detection of Prostate Cancer with Silicon Nanowire-Arrays Field Effect Transistors
作者: 紀天音
Chi, Tien-Yin
關鍵字: 矽奈米線
Silicon nanowire
場效電晶體
前列腺特異抗原
電性量測分析
生物電子介面
field-effect transistor
prostate specific antigen
electrical mearsurement
bioelectronic interface
出版社: 生醫工程研究所
引用: [1] D. A. Healy, C. J. Hayes, P. Leonard, L. McKenna, and R. O’Kennedy, "Biosensor developments: application to prostate-specific antigen detection," Trends in Biotechnology, vol. 25, pp. 125-131, 2007. [2] K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya, "Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors," Analytical Chemistry, vol. 79, pp. 782-787, 2007/01/01 2006. [3] M. Ferrari, T. Desai, and S. Bhatia, BioMEMS and biomedical nanotechnology: Springer, 2006. [4] D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, "Electrochemical Biosensors - Sensor Principles and Architectures," Sensors, vol. 8, pp. 1400-1458, 2008. [5] X. J. Huang and Y. K. Choi, "Chemical sensors based on nanostructured materials," Sensors and Actuators B-Chemical, vol. 122, pp. 659-671, Mar 26 2007. [6] F. Patolsky, G. F. Zheng, and C. M. Lieber, "Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species," Nature Protocols, vol. 1, pp. 1711-1724, 2006. [7] C.-Y. Hsiao, C.-H. Lin, C.-H. Hung, C.-J. Su, Y.-R. Lo, C.-C. Lee, H.-C. Lin, F.-H. Ko, T.-Y. Huang, and Y.-S. Yang, "Novel poly-silicon nanowire field effect transistor for biosensing application," Biosensors and Bioelectronics, vol. 24, pp. 1223-1229, 2009. [8] Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, "High performance silicon nanowire field effect transistors," Nano Letters, vol. 3, pp. 149-152, Feb 2003. [9] D. Neamen, Microelectronic Circuit Analysis and Design, 3 ed.: McGraw-Hill Science/Engineering/Math, 2006. [10] 吳昌崙 and 張景學, 半導體製造技術, 2 ed. 台灣省臺北縣中和市: 新文京開發, 2003. [11] W. Y. Li, L. N. Xu, and J. Chen, "Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors," Advanced Functional Materials, vol. 15, pp. 851-857, 2005. [12] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, and C. A. Grimes, "Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure," Advanced Materials, vol. 15, pp. 624-627, 2003. [13] F. Zhang, X. Wang, S. Ai, Z. Sun, Q. Wan, Z. Zhu, Y. Xian, L. Jin, and K. Yamamoto, "Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor," Analytica Chimica Acta, vol. 519, pp. 155-160, 2004. [14] P. K. Sudeep, S. T. S. Joseph, and K. G. Thomas, "Selective Detection of Cysteine and Glutathione Using Gold Nanorods," Journal of the American Chemical Society, vol. 127, pp. 6516-6517, 2005/05/01 2005. [15] G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nature Biotechnology, vol. 23, pp. 1294-1301, Oct 2005. [16] B. P. Timko, T. Cohen-Karni, Q. Quan, T. Bozhi, and C. M. Lieber, "Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays," Nanotechnology, IEEE Transactions on, vol. 9, pp. 269-280, 2010. [17] R. C. Conaway and J. W. Conaway, Advances in protein chemistry: Academic Press, 2004. [18] J. N. Abelson, M. I. Simon, M. Wilchek, and E. A. Bayer, Avidin-Biotin Technology: Academic Press, 1990. [19] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, "Electrical detection of single viruses," Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 14017-14022, September 28, 2004 2004. [20] J. T. Sheu, C. C. Chen, P. C. Huang, Y. K. Lee, and M. L. Hsu, "Selective Deposition of Gold Nanoparticles on SiO$_{2}$/Si Nanowires for Molecule Detection," Jpn. J. Appl. Phys., vol. 44, pp. 2864-2867, 2005. [21] S. Balamurugan, A. Obubuafo, S. Soper, and D. Spivak, "Surface immobilization methods for aptamer diagnostic applications," Analytical and Bioanalytical Chemistry, vol. 390, pp. 1009-1021, 2008. [22] M. Mascini, Aptamers in bioanalysis: Wiley-Blackwell, 2009. [23] J.-O. Lee, H.-M. So, E.-K. Jeon, H. Chang, K. Won, and Y. Kim, "Aptamers as molecular recognition elements for electrical nanobiosensors," Analytical and Bioanalytical Chemistry, vol. 390, pp. 1023-1032, 2008. [24] C. B. Anfinsen, J. T. Edsall, and F. M. Richards, Advances in protein chemistry: Academic Press, 1975. [25] R. Bashir, R. Gomez, A. Sarikaya, M. R. Ladisch, J. Sturgis, and J. P. Robinson, "Adsorption of avidin on microfabricated surfaces for protein biochip applications," Biotechnology and Bioengineering, vol. 73, pp. 324-328, 2001. [26] R. N. Orth, T. G. Clark, and H. G. Craighead, "Avidin-Biotin Micropatterning Methods for Biosensor Applications," Biomedical Microdevices, vol. 5, pp. 29-34, 2003. [27] S. D. Mikolajczyk, Y. Song, J. R. Wong, R. S. Matson, and H. G. Rittenhouse, "Are multiple markers the future of prostate cancer diagnostics?," Clinical Biochemistry, vol. 37, pp. 519-528, 2004. [28] T. C. C. U. Institute. (2006). Prostate-Specific Antigen (PSA) Blood Test. Available: http://www.webmd.com/prostate-cancer/guide/psa [29] F. H. Schroder, H. B. Carter, T. Wolters, R. C. N. van den Bergh, C. Gosselaar, C. H. Bangma, and M. J. Roobol, "Early Detection of Prostate Cancer in 2007: Part 1: PSA and PSA Kinetics," European Urology, vol. 53, pp. 468-477, 2008. [30] "Total PSA ELISA (RE54091)," IBL International Corp.2011. [31] "ARCHITECT Total PSA (REF7K70)," Abbott Ireland Diagnostics Division2007. [32] P. Patricia R. Slev, S. L. La''ulu, and M. William L. Roberts, PhD, "Intermethod Differences in Results for Total PSA, Free PSA, and Percentage of Free PSA," American Society for Clinical Pathology, vol. 129, pp. 952-958, 2008. [33] A. P. Berger, R. Spranger, K. Kofler, H. Steiner, G. Bartsch, and W. Horninger, "Early detection of prostate cancer with low PSA cut-off values leads to significant stage migration in radical prostatectomy specimens," The Prostate, vol. 57, pp. 93-98, 2003. [34] T. F. S. Inc., Thermo Scientific Pierce Antibody Production and Purification Technical Handbook: Thermo Fisher Scientific Inc., 2010. [35] D. E. Chandler and R. W. Roberson, Bioimaging: current concepts in light and electron microscopy: Jones and Bartlett Publishers, 2009. [36] M. H. Loretto, Electron beam analysis of materials: Chapman & Hall, 1994. [37] J. C. Vickerman and I. Gilmore, Surface Analysis: The Principal Techniques: John Wiley & Sons, 2011. [38] P. E. J. Flewitt and R. K. Wild, Physical methods for materials characterisation: Institute of Physics Pub., 2003. [39] 朱健誠, "A Study on the Behavior of Pressure Drop for Liquid Flows through V-Shaped Microchannels," 中原大學, 2003. [40] D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi, and D. Vuillaume, "A Tunnel Current in Self-Assembled Monolayers of 3-Mercaptopropyltrimethoxysilane," Small, vol. 1, pp. 725-729, 2005. [41] D. R. Kim, C. H. Lee, and X. L. Zheng, "Probing Flow Velocity with Silicon Nanowire Sensors," Nano Letters, vol. 9, pp. 1984-1988, May 2009. [42] M. Hu, S. Noda, T. Okubo, Y. Yamaguchi, and H. Komiyama, "Structure and morphology of self-assembled 3-mercaptopropyltrimethoxysilane layers on silicon oxide," Applied Surface Science, vol. 181, pp. 307-316, 2001. [43] M. Kawamura, T. Fudei, Y. Abe, and K. Sasaki, "Improved Thermal Stability of Ag Thin Films by Organic Subnanolayer at Interface with Silicon Oxide Layer," Japanese Journal of Applied Physics, vol. 48, Nov 2009. [44] L. Martinez, L. G. Carrascosa, Y. Huttel, L. M. Lechuga, and E. Roman, "Influence of the linker type on the Au-S binding properties of thiol and disulfide-modified DNA self-assembly on polycrystalline gold," Physical Chemistry Chemical Physics, vol. 12, pp. 3301-3308, 2010. [45] "The VITROS Immunodiagnostic Products PSA Reagent Pack(REF. 680 1756)," Ortho-Clinical Diagnostics,Johnson & Johnson, Inc.2005. [46] C.-C. Tsai, P.-L. Chiang, C.-J. Sun, T.-W. Lin, M.-H. Tsai, Y.-C. Chang, and Y.-T. Chen, "Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection," Nanotechnology, vol. 22, p. 135503, 2011. [47] C. D. Wagner and G. E. Muilenberg, Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy: Perkin-Elmer Corp., Physical Electronics Division, 1979. [48] S. P. Lin, C. Y. Pan, K. C. Tseng, M. C. Lin, C. D. Chen, C. C. Tsai, S. H. Yu, Y. C. Sun, T. W. Lin, and Y. T. Chen, "A reversible surface functionalized nanowire transistor to study protein-protein interactions," Nano Today, vol. 4, pp. 235-243, Jun 2009. [49] C.-G. Ahn, C. W. Park, J.-H. Yang, C. S. Ah, A. Kim, T.-Y. Kim, H. Y. Yu, M. Jang, S.-H. Kim, I.-B. Baek, S. Lee, and G. Y. Sung, "Biosensors using the Si nanochannel junction-isolated from the Si bulk substrate," Journal of Applied Physics, vol. 106, pp. 114701-114701-5, 2009. [50] T. F. S. Inc., Avidin-Biotin Technical Handbook: Thermo Fisher Scientific Inc. , 2011. [51] R. H. Tian, S. Regonda, J. M. Gao, Y. L. Liu, and W. Hu, "Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors," Lab on a Chip, vol. 11, pp. 1952-1961, 2011. [52] A. T. Marttila, O. H. Laitinen, K. J. Airenne, T. Kulik, E. A. Bayer, M. Wilchek, and M. S. Kulomaa, "Recombinant NeutraLite Avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties," FEBS Letters, vol. 467, pp. 31-36, 2000. [53] A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, "Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors," Applied Physics Letters, vol. 91, Sep 3 2007.
摘要: 以矽奈米線為主的金氧半場效電晶體(silicon nanowire-based metal-oxide-semiconductor field-effect transistor, SiNW-MOSFET)因體積小、具高靈敏度、免標定等特性,近來已廣泛地應用在生醫檢測。本研究中主要是利用兩種不同分子APTMS ((3-aminopropyl) trimethoxysilane)及MPTMS(3-mercaptopropyl trimethoxysilane) 於矽奈米線上形成不同厚度之自組裝單分子層膜(self-assembled monolayer, SAM),再分別固定前列腺抗體(antibody against prostate-specific antigen, anti-PSA)於經表面修飾之矽奈米線上,以作為前列腺特異抗原(prostate specific antigen, PSA) 免標定地即時檢測,並藉由原子力顯微鏡(Atomic force microscopy, AFM)與化學分析電子儀(Electron Spectroscopy for Chemical Analysis, ESCA)等結果,分別佐證此兩種不同單分子層與PSA和anti-PSA所形成之生物電子介面。由AFM分析結果得知,APTMS之分子層厚度約為0.79 ~ 0.87 nm,比MPTMS分子層(0.60 ~ 0.84 nm)厚;由ESCA分析結果得知anti-PSA藉由EDC-NHS活化其末端官能基(COOH)後可與APTMS末端之胺基形成醯胺鍵結(-CONH),相對地, anti-PSA與已修飾MPTMS單分子層之矽奈米線間則形成雙硫鍵結(-S-S-)。此外,具有高度特異性鍵結特性之生物素(biotin)與抗生物素(avidin)亦分別建立於已修飾APTMS與MPTMS單分子層之表面上,以進行表面特性分析。由電性量測(electrical measurement)結果顯示,已修飾biotin分子之SiNW-MOSFET不同的分壓變化可驗證其對於avidin分子的感測具有選擇性,再者,固定anti-PSA分子於經APTMS表面修飾處理之SiNW-MOSFET上可提供較清晰得PSA感測電訊號。藉由本研究結果得知,適當的表面修飾不僅可提供具生物相容性與功能性之介面,更可加強晶片偵測的靈敏度。
Recently, various SiNW-MOSFETs (silicon nanowire-based metal-oxide-semiconductor field-effect transistors) have been explored in many biomedical aspects because of their high selectivity, extreme sensitivity, rapid response, and label-free detection of biomolecules. In this work, 3-aminopropyl trimethoxysilane (APTMS) and 3-mercaptopropyl trimethoxysilane (MPTMS) self-assembled monolayers (SAMs) were used to modify the surface of SiNW-MOSFETs, and antibody against prostate-specific antigen (anti-PSA) was then immobilized on each APTMS and MPTMS SAMs modified surface for label-free detection of prostate specific antigen(PSA). The bioelectronic interfaces between modified molecules and SiNW-MOSFETs were characterized by atomic force microscopy (AFM) and electron spectroscopy for chemical analysis (ESCA). AFM scanning showed better uniform modification of APTMS SAM modified NW-MOSFETs was 0.79 ~ 0.87 nm, which was thicker than MPTMS SAMs (0.60 ~ 0.84 nm). In ESCA analysis, the terminal carboxyl group (COOH) of anti-PSA was activated by EDC-NHS and subsequently coupled to the terminal amino group (-NH2) of APTMS by amide bond(-CONH). By contrast, the disulfide bond (-S-S-) was formed between anti-PSA and MPTMS SAMs modified surface. In addition, highly specific biomolecular interaction of biotin and avidin was also characterized and implemented on our APTMS and MPTMS SAMs modified surfaces. In the results of electrical measurement, the varied potential from biotin-immobilized SAMs modified SiNW-MOSFET validated the selective sensing of avidin. Moreover, anti-PSA immobilized on APTMS SAMs modified SiNW-MOSFET demonstrated better electrical for PSA detection. We found adequate modification could not only provide a biocompatible and functional interface but also enhance the sensitivity of sensing devices.
URI: http://hdl.handle.net/11455/3964
其他識別: U0005-0108201222310200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108201222310200
Appears in Collections:生醫工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.