Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3974
標題: 陶瓷二氧化鈦奈米管柱對纖維母細胞生長之影響
The Effects of Ceramics-like Titania Nanotubes on 3T3 Fibroblast Cell Growth
作者: 蔣若玫
Chiang, Ruo-Mei
關鍵字: 陽極氧化法
anodizationanodization
二氧化鈦
遠紅外線
纖維母細胞
細胞遷徙試驗
titania (TiO2)
far-infrared (FIR)
fibroblast
cell migration test. titania (TiO2)
far-infrared (FIR)
fibroblast
cell migration test
出版社: 生醫工程研究所
引用: 1. 解思深, 鄒小平: 大學物理. 2000, 19(12):1-4. 2. 陳光華, 鄧金祥: 奈米薄膜技術與應用. 台北: 五南圖書出版公司; 2005. 3. Nazeeruddin MK, Kay A, Rodicio I, Humpbry-Baker R, Miiller E, Liska P, Vlachopoulos N, Gratzel M: Conversion of light to electricity by cis-X2bis(2,2''-bipyridyl-4,4''-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115:6382-6390. 4. Fujishima A, Rao TN, Tryk DA: Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2000, C1:1. 5. Asahi R, Taga Y, Mannstadt W, Freeman AJ: Electronic and optical properties of anatase TiO2. Physical Review B 2000, 61(11):7459-7465. 6. Adachi M, Murata Y, Okada I, S.Yoshikawa: Formation of titania nanotubes and applications for dye-sensitized solar cells. Journal of The Electrochemical Society 2003, 150:G488-G493. 7. Oh SH, Finones RR, Daraio C, Chen LH, Jin SH: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005, 26(24). 8. Fujishima A, Honda K: Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238:37-38. 9. Feng X, Macak JM, Schmuki P: Robust self-organization of oxide nanotubes over a wide pH range. Chemistry of Materials 2007, 19(7):1534-1536. 10. Suzuki R, Muyco J, McKittrick J, Frangos JA: Reactive oxygen species inhibited by titanium oxide coatings. Journal of Biomedical Materials Research Part A 2003, 66(2):396-402. 11. Kriparamanan R, Aswath P, Zhou A, Tang L, Nguyen KT: Nanotopography: Cellular responses to nanostructured materials Journal of Nanoscience and Nanotechnology 2006, 6(7):1905-1919. 12. Anselme K: Osteoblast adhesion on biomaterials. Biomaterials 2000, 21(7):667-681. 13. Schwarzburg K, Willig F: Origin of photovoltage and photocurrent in the nanoporous dye-sensitized electrochemical solar cell. Journal of Physical Chemistry B 1999, 103(28):5743-5746. 14. 呂宗昕: 圖解奈米科技與光觸媒. 台北: 商周出版; 2003. 15. Hosono E, Fujihara S, Kakiuchi K, Imai H: Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. Journal of the American Chemical Society 2004, 126(25):7790-7791. 16. Zhang Q, Gao L: Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: Insights from rutile TiO2 Langmuir 2002, 19(3):967-971 17. Andersson M, Osterlund L, Ljungstrom S, Palmqvist A: Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. The Journal of Physical Chemistry B 2002, 106(41):10674-10679. 18. Cheng H, Ma J, Zhao Z, Qi L: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chemistry of Materials 1995, 7(4):663-671. 19. Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI: Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chemistry of Materials 2003, 15(17):3326-3331. 20. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K: Formation of titanium oxide nanatube. Langmuir 1998, 14(12):3160-3163. 21. Jiu J, Isoda S, Wang F, Adachi M: Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. The Journal of Physical Chemistry B 2006, 110(5):2087-2092. 22. Tsai CC, Teng H: Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials 2004, 16(2):4352-4358. 23. Zhang M, Bando Y, Wada K: Sol-gel template preparation of TiO2 nanotubes and nanorods. Journal of Materials Science Letters 2001, 20:167-170. 24. Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y: Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires. Nano Letters 2002, 2(7):717-720. 25. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials & Solar Cells 2006, 90:2011-2075. 26. Macak JM, Sirotna K, Schmuki P: Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Helvetica Chimica Acta 2005, 50. 27. Taveira LV, Macak JM, Tsuchiya H, Dick LFP, Schmuki P: Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. Journal of The Electrochemical Society 2005, 152. 28. Wu J, Shi L, Yuan S, Chen Y, Zhang Y: Making match tradeoff system based on multi-agent in mobile E-commerce. MultiMedia and Information Technology 2008, 24. 29. Yoshitake H, Sugihara T, Tatsumi T: Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of Its surface by chemical vapor deposition. Chemistry of Materials 2002, 14(3):1023-1029. 30. Yu H, Quan X, Chen S, Zhao H, Zhang Y: TiO2-carbon nanotube heterojunction arrays with a controllable thickness of TiO2 layer and their first application in photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 2008, 200(2-3):301-306. 31. Zhao J, Wang X, Chen R, Li L: Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Communications 2005, 134:705-710. 32. Thompson GE: Porous anodic alumina: Fabrication characterization and applications. Thin Solid Film 1997, 297:192-201. 33. Parkhutik VP, Shershulsky VI: Theoretical modelling of porous oxide growth on aluminium. Journal of Physics D: Applied Physics 1992, 28:1258. 34. Siejka J, Ortega C: O-18 study of field-assisted pore formation in compact anodic oxide-films on aluminum. Journal of the Electrochemical Society 1977, 124:883. 35. Leach JSL, Pearson BR: Crystallization in anodic oxide films. Corrosion Science 1988, 28:43-56. 36. Pakes A, Thompson GE, Skeldon P, Morgan PC: Development of porous anodic films on 2014-T4 aluminium alloy in tetraborate electrolyte. Corrosion Science 2003, 45:1275. 37. Dover JS, Phillips TJ, Arndt KA: Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation. Journal of the American Academy of Dermatology 1989, 20:278-286. 38. Danno K, Mori N, Toda K, Kobayashi T, Utani A: Near-infrared irradiation stimulates cutaneous wound repair: Laboratory experiments on possible mechanisms. Photodermatology, Photoimmunology & Photomedicine 2001, 17:261-265. 39. 孫國興: 針灸學. 上海: 上海科學技術出版社; 1999. 40. 丁光宏, 沈雪勇, 褚君浩, 黃志銘, 姚傳, 劉輝, 王盛章, 費倫: 中醫灸與人體穴位紅外輻射光譜特性研究. 中國生物醫學工程學報 2002, 21(4):59-63. 41. Hamada Y, Teraoka F, Matsumotob T, Madachi A, Toki F, Uda E, Hase R, Takahashi J, Matsuura N: Effects of far infrared ray on Hela cells and WI-38 cells. International Congress Series 2003, 1255:339-341. 42. 劉海平, 沈雪詠, 丁光宏: 灸炙與經絡穴位紅外輻射特性. 中國針灸 2004, 24(2):10-19. 43. 陳甦臺, 黃建諭: 中醫灸與遠紅外線照射人體穴位後之良絡比較. 針傷研究 2006, 9(1):116-124. 44. Martin P: Wound healing: Aiming for perfect skin regeneration. Science 1997, 276:75-81. 45. Singer AJ, Clark RA: Cutaneous wound healing. The New England Journal of Medicine 1999, 341:738-746. 46. Kane SO, Ferguson MWJ: Transforming growth factor βs and wound healing. The International Journal of Biochemistry & Cell Biology 1997, 29:63–78. 47. Roberts DJ, Johnson RL, Burke AC, Nelson CE, Morgan BA, Tabin C: Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 1995, 121(10):3163-3174. 48. Yu W, Naim JO, Lanzafame RJ: Expression of growth factors in early wound healing in rat skin. Lasers in Surgery and Medicine 1994, 15:281-289. 49. Falanga V: Growth factors and wound healing. Dermatologic Clinics 1994, 11:667-675. 50. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH et al: Transforming growth factor type β: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proceedings of the National Academy of Sciences 1986, 83:4167-4171. 51. Desmouliere A, Gabbiani G: Modulation of fibroblastic cytoskeletal features during pathological situations: The role of exracellular matrix and cytokines. Cell Motility and the Cytoskeleton 1994, 29:195-302. 52. Postlethwaite AE, Keski OJ, Moses HL, Kang AH: Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor Journal of Experimental Medicine 1987, 165:251-256. 53. Raghow R, Postlethwaite AE, Keski OJ, Moses HL: Transforming growth factor-β increases steady-state levels of type I procollagen and fibronectin messenger RNAs posttranscriptionally in cultured human dermal fibroblasts. Journal of Clinical Investigation 1987, 79:1285-1288. 54. Udagawa Y, Nagasawa H: Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice. In Vivo 2000, 14:321-326. 55. Inoue S, Kabaya M: Biological activities caused byfar-infrared radiation. International Journal of Biometeorology 1989, 33:145-150. 56. Honda K, Inoue S: Sleep-enhancing effects of far-infrared radiation in rats. International Journal of Biometeorology 1988, 32:92-94. 57. Shimokawa S, Yokono T, Mizuno T, Tamura H, and TE, Araiso T: Effect of far-infrared light irradiation on water as observed by X-ray diffraction measurements. Japanese Journal of Applied Physics 2004, 43:545-547. 58. Skoog DA, Leary JJ: Principles of Instrumental Analysis 4th Ed. Saunders College Pulishing 1992:254-260. 59. Dierickx CC: The role of deep heating for noninvasive skin rejuvenation. Lasers in Surgery and Medicine 2006, 38:799-807. 60. Yoo BH, Park CM, Oh TJ, Han SH, Kang HH, Chang IS: Investigation of jewelry powders radiating far-infraredrays and the biological effects on human skin. Journal of Cosmetic Science 2002, 53:175-184. 61. Lin CC, F.Chang C, Lai MY, Chen TW, Lee PC, Yang WC: Far-infrared therapy: A novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. Journal of the American Society of Nephrology 2007, 18:985-992. 62. Toyokawa H, Matsui Y, Uhara J, Tsuchiya H, Teshima S, Nakanishi H, Kwon AH, Azuma Y, Nagaoka T, Ogawa T et al: Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Experimental Biology and Medicine 2003, 228:724-729. 63. Windus DW: Permanent vascular access: A nephrologist''s view. American Journal of Kidney Diseases 1993, 21:457-471. 64. Chaudhury PR, Sukhatme VP, Cheung AK: Hemodialysis vascular access dysfunction: A cellular and molecular viewpoint. Jounal of the American Society of Nephrology 2006, 17:1112-1127. 65. Feldman HI, Kobrin S, Wasserstein A: Hemodialysis vascular access morbidity. Jounal of the American Society of Nephrology 1996, 7:523-535. 66. Biro S, Masuda A, Kihara T, C.Tei: Clinical implications of thermal therapy in lifestyle-related diseases. Experimental Biology and Medicine 2003, 228(10):1245-1249. 67. Tei C, Horikiri Y, Park JC, Jeong JW, Chang KS, Toyama Y, Tanaka N: Acute hemodynamic improvement by thermal vasodilation in congestive heart failure. Circulation Journal 1995, 91:2582-2590. 68. Kihara T, Biro S, Imamura M, Yoshifuku S, Takasaki K, Ikeda Y, Otuji Y, Minagoe S, Toyama Y, Tei C: Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. Journal of the American College of Cardiology 2002, 39:754-759. 69. Ikeda Y, Biro S, Kamogawa Y, Yoshifuku S, Eto H, Orihara K, Kihara T, Tei C: Repeated thermal therapy upregulates arterial endothelial nitric oxide synthase expression in syrian golden hamsters. Japanese Circulation Journal 2001, 65:434-438. 70. Vogel RA: Coronary risk factors, endothelial function, and atherosclerosis: A review. Clinical Cardiology 1997, 20:426-432. 71. Bonetti PO, Lerman LO, Lerman A: Endothelial dysfunction: A marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology 2003, 23:168-175. 72. Nagasawa H, Udagawa Y, Kiyokawa S: Evidence that irradiation of far-infrared rays inhibits mammary tumor growthin SHN mice. Anticancer Research 1999, 19:1797-1800. 73. Leung TK, Lee CM, Lin MY, Ho YS, Chen CS, Wu CH, Lin YS: Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells. Journal of Medical and Biological Engineering 2009, 29(1). 74. Nathan C: Nitric oxide as a secretory product of mammalian cells. Federation of American Societies forExperimental Biology 1992, 6:3051-3064. 75. Reveneau S, Arnould L, Jolimoy G, Hilpert S, Lejeune P, V.Saint-Giorgio, Belichard C, Jeannin JF: Nitric oxide synthase in human breast cancer is associated with tumor grade, proliferation rat, and expression of progesterone receptors. Laboratory Investigation 1999, 79. 76. Lahiri M, Martin JHJ: Reduced expression of endothelial and inducible nitric oxide synthase in a multidrugresistant variant of the MCF-7 human breast cancer cell line. Oncology Reports 2004, 12:1007-1011. 77. Jennings RW, Hunt TK: Overview of postnatal wound healing. New York: Elsevier; 1992. 78. Forrest L: Current concepts in soft connective tissue wound healing. British Journal of Surgery 1983, 70:133-140. 79. Clark RAF: Wound repair: Overview and general considerations. New York: Plenum Press; 1996. 80. 盧明德: 聚噻吩和半導體氧化物奈米複合材料合成及應用於太陽能電池材料之研究. 桃園: 國立中央大學; 2008. 81. 李曉紅, 張校剛, 力虎林: 高等學校化學學報, vol. 22; 2001. 82. Hsieh YY, Lin JP, Liu WC, Lin CC: Medical applications and the action mechanisms of far-infrared ray. Taiwanese Journal of Applied Radiation and Isotopes 2007, 3(3):333-340. 83. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR: Scanning electron microscopy and X-ray microanalysis. New York: Plenum Press; 1992. 84. Williams DB, Carter CB: Transmission electron microscopy. New York: Plenum Press; 1996. 85. 場發射掃描式電子顯微鏡 (JEOL JSM-6700F) 國科會貴重儀器 [http://www.mse.nchu.edu.tw/p1.asp?uno=7] 86. 潘扶民: 化學分析電子儀分析. 台北: 中國材料科學學會; 2005. 87. 莊豐憶, 楊思明: X光光電子/歐傑電子能譜儀分析簡介. 化工技術 2003, 11(2):126-141. 88. 奈米元件材料分析:化學分析電子儀 (ESCA) [http://www.ndl.narl.org.tw/web/department/nmlab/device_aes.php] 89. 奈米元件材料分析:X光繞射儀 [http://www.ndl.narl.org.tw/web/department/nmlab/device_xrd.php] 90. 許樹恩, 吳泰伯: X光繞射原理與材料結構分析: 中國材料科學學會; 1993. 91. 汪健民: 材料分析: 中國材料科學學會; 1998. 92. 汪建民: 紅外線光譜分析. In. 新竹: 中國材料科學學會; 1998: 501. 93. 行政院國家科學委員會精密儀器發展中心出版: 儀器總覽-表面分析儀器; 1998. 94. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z: Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Applied Catalysis B: Environmental 2007, 69:138-144. 95. Hermana GS, Gaoa Y, Trana TT, Osterwalderb J: X-ray photoelectron diffraction study of an anatase thin film: TiO2(001). Surface Science 2000, 447:201-211. 96. Wei Z, Liu Z, Jiang R, Bian C, Huang T, Yu A: TiO2 nanotube array film prepared by anodization as anode material for lithium ion batteries. Journal of Solid State Electrochemistry 2010, 14(6):1045-1050. 97. Sreekantana S, Lockmana Z, Hazana R, M.Tasbihib, Tongb LK, Mohamedb AR: Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. Journal of Alloys and Compounds 2009, 485:478-483. 98. Macak JM, Tsuchiya H, Schmuki P: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Nanoporous Materials 2005, 44:2100-2102. 99. Tseng YH, Kuo CS, Huang CH, Hirakawa T, Negishi N, Bai HL: Photoinduced hydrophilicity of TiO2 film as the effect of H2O2 addition. The Institution of Engineering and Technology 2010, 5(2):81–84. 100. Gana YX, Ganb BJ, Sua L: Biophotofuel cell anode containing self-organized titanium dioxide nanotube array. Materials Science and Engineering B 2011, 176:1197-1206. 101. Yu J, Liu S, Yu H: Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation. Journal of Catalysis 2007, 249:59-66. 102. Skopin MD, Molitor SC: Effects of infrared laser exposure in a cellular model of wound healing. In: Photodermatology, Photoimmunology & Photomedicine. Edited by toledo Uo. Toledo OH; 2009: 1-2. 103. Kung HN, Yang MJ, Chang CF, Chau YP, Lu KS: In vitro and in vivo wound healing-promoting activities of b-lapachone. American Physiological Society 2008, 295:c931-c943. 104. Toyokawa H, Matsui Y, Uhara J, Tsuchiya H, Teshima S, Nakanishi H, Kwon AH, Azuma Y, Nagaoka T, Ogawa T et al: Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Experimental Biology and Medicine 2003, 228:724-729. 105. Davidson JM: Inflammation: Basic Principles and Clinical Correlates. New York: Raven 1992:673-691. 106. Zavan B, Brun P, Vindigni V, Amadori A, Habeler W, Pontisso P, Montemurro D, Abatangelo G, Cortivo R: Extracellular matrixenriched polymeric scaffolds as a substrate for hepatocyte cultures: In vitro and in vivo studies. Biomaterials 2005, 26:7038–7045. 107. Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G: Granulation tissue as a contractile organ. A study of structure and function. The Journal of Experimental Medicine 1972, 135:719–734.
摘要:   本論文係以研究自製二氧化鈦陶瓷材料對纖維母細胞生長之影響。研究的第一部分以電化學陽極氧化法,透過20 V固定電壓,於含0.1 M氟化鈉的電解液中製備二氧化鈦奈米管柱。並藉由掃描式電子顯微鏡,觀察二氧化鈦奈米管柱之表面形貌,所測得陽極氧化20分鐘、40分鐘和60分鐘之二氧化鈦奈米管柱孔洞內徑分別為86.9 nm、80 nm和79 nm,管柱長度則為507.7 nm、704.1 nm和828.5 nm;而後以EDS進行二氧化鈦成分分析,發現陽極氧化40分鐘的二氧化鈦,相較於其它組別鈦、氧元素比趨近於1:2,並透過X光光電子能譜儀確認表面生成物為二氧化鈦,X光繞射儀鑑定形成二氧化鈦晶相;最後使用傅立葉轉換紅外光光譜儀,確認自製二氧化鈦其波長位於10 μm,屬於遠紅外線波段。 第二部分為比較市售遠紅外線基材與自製具遠紅外線之二氧化鈦陶瓷材料,於體外非接觸式刺激纖維母細胞,隨後進行纖維母細胞生長狀態評估,並利用螢光染色觀察纖維母細胞外觀型態變化,研究結果發現遠紅外線基材照射纖維母細胞40分鐘,及使用acetone清洗的二氧化鈦陶瓷,能夠刺激纖維母細胞增生。而後以培養之NIH/3T3纖維母細胞於體外建構人工傷口模型,並分別以市售遠紅外線基材與自製具遠紅外線的二氧化鈦陶瓷材料,加以照射人工傷口模型觀察纖維母細胞遷徙的情形,結果顯示使用自製二氧化鈦陶瓷照射與市售遠紅外線基材照射,能夠促進細胞遷移和生長,對於創傷傷口的修復具有療效。
  In this thesis, the effects of titania nanotubes on the growth of the fibroblast cells are investigated. Firstly, the titania nanotubes were prepared by the electrochemical anodization method through a fixed voltage of 20 V and in an electrolyte containing sodium fluoride (NaF) solution of 0.1 M. The morphology of titania nanotubes was observed by scanning electron microscope (SEM). After anodizing for 20, 40, and 60 min, the pore sizes of titania nanotubes were 86.9, 80, and 79 nm; the lengths of those nanotubes were 507.7, 704.1, and 828.5 nm, respectively. The components of titania were analyzed and characterized by energy dispersive X-ray spectrometer (EDS), electron spectroscopy for chemical analysis (ESCA), and the crystallization of those was by X-ray diffraction (XRD). The Ti/O ratio approximated 1:2 when anodizing for 40 min in comparison with other groups. Then, the specific IR wavelength irradiated from the self-made titania material was detected at 10 μm by using the Fourier transform infrared spectrometer (FTIR). The in vitro artificial wound model was composed of fibroblast cells for observation cell growth and migration. The fibroblast cells were in vitro irradiated by using the commercial FIR substrate and the self-made titania ceramic materials. The morphology changes and fluorescent images of fibroblast cells were investigated before and after FIR irradiation. The results indicated that acetone-cleaned self-made titania material could facilitate the proliferation of fibroblast cells after 40-min irradiation. Our self-made titania ceramic material and commercial FIR substrates could promote the fibroblast cells growth and migration. It implied that our self-made titania ceramic material has repaired efficacy for traumatic wound.
URI: http://hdl.handle.net/11455/3974
其他識別: U0005-2007201211194700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2007201211194700
Appears in Collections:生醫工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.