Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3986
標題: 具懸浮鏡面垂直共振腔面射型雷射之研製
Fabrication of VCSELs with a Suspended Mirror Structure
作者: 王怡嬬
Wang, Yi-Ju
關鍵字: VCSEL
垂直共振腔面射型雷射
Suspended Mirror
Fabry-Perot caviry
MEMS
懸浮鏡面
Fabry-Perot共振腔
微機電製程技術
出版社: 精密工程研究所
摘要: 近年來網際網路的普及與數位內容的俱增,相對的頻寬的需求亦與日俱增,因而帶動了光纖網路的成長,而主動元件與模組技術為光纖網路發展重點,其中可調波長之雷射更扮演著光通訊主動元件中的關鍵角色。 本論文是以在垂直共振腔面射型雷射(Vertical Cavity Surface Emitting Laser; VCSEL)上製作Fabry-Perot共振腔,藉由微機電製程將Fabry-Perot鏡面製作成懸浮之鏡面,並利用靜電方式來調變共振腔之長度,以達到調變波長之功能。在元件製作方面,利用氧化侷限(oxidation confined)方式製作元件,並對元件的光電特性進行探討,具上DBR之VCDEL元件,其起始電壓=0.6 V,臨界電流(Ith)=5 mA,發光波長位於1202.6 nm,半高寬(FWHM)為2.732 nm。另一方面,具懸浮鏡面之VCSEL元件,其起始電壓為0.6 V,Ith=5 mA,發光波長位於1188.2 nm,半高寬(FWHM)為33 nm,給予懸浮鏡面最大偏壓40 V時,中心波長由1188.2 nm位移至1178.8 nm,獲得最大的波長調變範圍為9.4 nm。
With the rapid growth of digital contents and network usage, many active and passive optical components in fiber-optic communication have been demanded. Among those applications, the tunable wavelength laser with cost-effective modules can play an important role as a replacement of spare active diodes for networking reliability and installment cost efficiency. In this article, we designed a Fabry-Perot suspended mirror on VCSEL (Vertical Cavity Surface Emitting Laser) by MEMS (Micro-Electro-Mechanical-System) process. The air-gap thickness can be modulated electrostatically by applying a bias between the membrane and the cavity, which reduces the air-gap thickness (electrostatic forces) and therefore, the resonant wavelength. The devices are fabricated by oxidation confined process. We report on an investigation of characterization of devices. The reflectance of DBR, the turn on voltage, the threshold current(Ith), the peak wavelength and FWHM of the fabricated VCSEL with top dielectric DBR process are 99.5%, 0.7 V, 4mA, 1202.6nm and 2.732nm respectively. Moreover, the device was fabricated by VCSELs with suspended mirror. The peak wavelength of the tunable VCSEL is the 1188.2 nm with FWHM 33 nm before tuning. It can shift continuously from 1188.2 nm to 1178.8 nm as applied voltage from 0 V to 40 V. The 9.4 nm tuning rage under 0V to 40 V can be obtained.
URI: http://hdl.handle.net/11455/3986
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.