Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4031
標題: 曲面微透鏡陣列仿生複眼影像擷取系統之研究
Research of Curved Microlens Bionic Compound Eye for Imagery Capture System
作者: 胡家睿
Hu, Chia-Jui
關鍵字: artificial compound eye
人工複眼
microlens array
MOEMS
imagery system
微透鏡陣列
微光機電系統
影像系統
出版社: 精密工程學系所
引用: [1] B. Greiner, W. A. Ribi, E. J. Warrant, Cell Tissue Res. 316,377 (2004). [2] M. F. Land, “Visual acuity in insects,” Annu. Rev. Entomol., vol. 42, pp. 147-177, 1997. [3] J.W. Duparre and F.C. Wippermann, “Topical review: Micro-optical artificial compound eyes,” Bioinspiration and Biomimetics, vol. 1, pp. R1-R6, 2006. [4] J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Applied Optics, vol. 40, pp. 1806-1813, 2001. [5] R. Horisaki, S. Irie, Y. Ogura and J. Tanida, “There-dimensional information acquisition using a compound imaging system,“ Optical review, vol. 14, No. 5, pp.347-350, 2007. [6] S. Sinzinger and J. Jahns, Microoptics, WILEY-VCH Verlag GmbH, Weinheim, pp. 85-103, 1999. [7] Z. D. Popovic, R. A. Sprague and G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays,” Applied Optics, vol. 27, pp. 1281-1284, 1988. [8] Ph Nussbaum, R Volkel, H P Herzig, M Eisner and S Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt., vol. 6, pp. 617-636, 1997. [9] W. R. Cox, T. Chen and D. Hayes, “Micro-optics fabrication by ink-jet printing,” Optics & Photonics News, vol. 12, pp. 32-35, 2001. [10] C. S. Lee and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A, vol. 88, pp.87-90, 2001. [11] M. R. Wang and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” IEEE Photonics Technology Letters, pp. 7568-7576, 1998. [12] C. F. Tsou and C. Lin, “A new method for microlens fabrication by a heating encapsulated air process,” IEEE Photonics Technology Letters, vol. 18, pp. 2490-2492, 2006. [13] C. F. Tsou and C. H. Lin, “An improved process for fabricating microlens array with high fill factor and controllable configuration,” Journal of Microelectromechanical Systems, vol. 17, No.4, pp. 1047-1057, 2008. [14] T. R. Jay and M. B. Sterm, “Step heat-forming photoresist method,” Physical Chemistry Of Surfaces, Opt. Eng., pp. 3547-3552, 1994. [15] T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, “Ultraviolet-cured polymer microlens arrays,” Physical Chemistry of Surfaces, Appl. Opt. vol. 38, pp. 2991-2996, 1999. [16] 張紅鑫、盧振武、王瑞庭、李風有、劉華、孫強,曲面複眼成項系統的研究,光學精密工程,第14卷,第3期,2006年6月。 [17] B. G. Park, K. Choi, C. Jin and H. S. Lee, “Micro lens-on-lens array,” The Royal Society of Chemistry, pp.1751-1755, 2012. [18] D. Zhu, C. Li, X. Zeng and H. Jiang, “Hydrogel-actuated tunable-focus microlens arrays mimicking compound eyes,” IEEE Transducers, pp.2302-2305,2009. [19] J. Kim, K. H. Jeong and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Optics Letters., vol.30, pp. 5-7, 2005. [20] K. H. Jeong, J. Kim and L. P. Lee, “Biologically inspired artificial compound eyes,” Science , vol. 312, pp. 557-561, 2006. [21] J. Duparre, P. Dannberg, P. Schreiber, A. Brauer and A. Tunnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Applied Optics, vol. 43, pp. 4303-4310, 2004. [22] J. Duparre, P. Dannberg, P. Schreiber, A. Brauer and A. Tunnermann, “Thin compound-eye camera,” Applied Optics, vol. 44, pp. 2949-2956, 2005. [23] J. Duparre, P. Schreiber and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. of SPIE, vol.5249, pp. 408-418, 2004. [24] E. Hecht, Optics 4th, Addison Wesley, Adelphi University, 2002. [25] 宋慧琴,眼應用光學基礎,新文京開發出版股份有限公司,2007。 [26] 耿繼業、何建娃,幾何光學,全華科技圖書股份有限公司,2001。 [27] 劉俊宏,微透鏡仿生複眼影像擷取系統之研究,國立中興大學碩士論文,2010。 [28] 莊達人,VLSI製造技術,高立圖書有限公司,2000。 [29] 謝昇融,微型醫用鎳質霧化器製作技術研究,國立中興大學碩士論文,2009。
摘要: 本研究的目標為開發曲面仿生複眼微透鏡陣列。以微影技術與電鑄技術做出平面透鏡陣列模仁,並以彈性光學材料PDMS(Polydimethylsiloxane)進行翻模。接著製作上方半球形開孔之PDMS腔體,將微透鏡陣列薄膜倒置黏貼於開孔上方,抽氣使其腔體內外壓力不同,讓平面微透鏡陣列變形為曲面微透鏡陣列。將曲面微透鏡陣列與CMOS影像感測器做結合,完成仿生複眼影像擷取裝置,達成系統之視角約為112゜。本研究成功製作複眼曲面微透鏡陣列,具有製程簡易、模仁可重複使用、成型快速等優點。
The research goal is to develop a bionic compound eye with curved microlens array. In this study, lithography and electroforming technology were used to fabricate planar microlens array mold. The PDMS (Polydimethylsiloxane) was the material for replicating planner microlens array membrane. To make a top hemispheres opening chamber which was replicated from a acrylic mold, then the planar microlens array membrane was placed on the chamber. The syringe was used to draw the air which is in the chamber. The planer microlens array membrane was deformed by pressure difference and it became the curved microlens array. It was combined with the CMOS image sensor to capture images. The achieved FOV of the system is 112°. This study successfully fabricated the apposition microlens array, which has the advantages of simple process, the mold can be reused for rapid forming.
URI: http://hdl.handle.net/11455/4031
其他識別: U0005-0507201216031200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0507201216031200
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.