Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4036
標題: 以脫離技術研製微機電電容式麥克風
A study of MEMS-Type Condenser Microphone Using Wafer Transfer Technique
作者: 蔣宇寧
Jiang, Yu-Ning
關鍵字: condenser microphone
電容式麥克風
wafer transfer technique
frequency response
脫離技術
頻率響應
出版社: 精密工程學系所
引用: 參考文獻 [1] O. Brosze, “Aufoau und Wirkungsweise eletroakustischer Wandler”, Der Fernmelde Ingenieur, 35. Jahrgang, German, Heft. 6, pp. 1-36, Heft. 7, pp. 1-35 (1981). [2] J. K. Hilliard, “Electroacoustics to 1940”, J. Acoust. Soc. Am., vol. 61, pp. 267-273 (1977). [3] E. C. Wente, “A condenser as a uniformly sensitive instrument for the absolute measurement of sound intensity”, Phys. Rev., vol. 10, pp. 39-63 (1917). [4] G. M. Sessler and J. E. West, “Electret transducers:a review”, J. Acoust. Soc. Am., vol. 53, pp. 1589-1600 (1973). [5] G. M. Sessler and J. E. West, “Self-biased condenser microphone with high capacitance”, J. Acoust. Soc. Am., vol. 34, pp. 1787-1788 (1962). [6] G. M. Sessler and J. E. West, “Foil-electret microphones”, J. Acoust. Soc. Am., vol. 40, pp. 1433-1440 (1966). [7] G. M. Sessler and J. E. West, “First-order gradient microphone based on the foil-electret principle:Discrimination against air-borne and solid-borne noises”, J. Acoust. Soc. Am., vol. 46, pp. 1081-1086 (1969). [8] F. Fraim and P. Murphy, “Miniature Electret Microphones”, J. Audio Eng. Soc., vol. 18, pp. 511-517 (1970). [9] E. V. Carlson, “A subminiature condenser microphone using electret technology”, The Hearing Dealer, April (1973). [10] M. C. Killion and E. V. Carlson, “A subminiature electret-condenser microphone of new design”, J. Audio Eng. Soc., vol. 22, pp. 237-243 (1974). [11] C. W. Reedyk, “Noise-cancelling electret microphone for lightweight head telephone sets”, J. Acoust. Soc. Am., vol. 53, pp. 1609-1615 (1973). [12] G. M. Sessler, “Acoustic Sensors”, Sensors and Actuators A, vol. 25-27, pp. 323-330 (1991). [13] K. Matsuzawa, “Condenser microphones having a flat frequency response up to 500 kHz”, Japan. Appl. Phys., vol. 17, pp. 451-152 (1978). [14] M. Royer, J. O. Holmen, M. A. Wurm, O. S. Aadland and M. Glenn, “ZnO on Si integrated acoustic sensor”, Sensors and Actuators A, vol. 4, pp. 357-362 (1983). [15] D. Hohm and R. Gerhard-Multhaupt, “Silicon-dioxide electret transducer”, J. Acoust. Soc. Am., vol. 75, pp. 1297-1298 (1984). [16] D. Hohm, “Kapazitive Silizium-Sensoren fur Horschallanwendungen”, Fortschritt-Berichte VDI, VDI-Verlag, Dusseldorf (1986). [17] D. Hohm and G. Hess, “A subminiature condenser microphone with silicon nitride membrane and silicon back plate”, J. Acoust. Soc. Am, vol. 85, pp. 476-480 (1989). [18] P. M. Morse, “Vibration and Sound, International series in pure and applied physics”, McGraw-Hill, New York, 2nd edn., pp. 189, 202, 210, 222, 244 and 452 (1948). [19] J. A. Voorthuyzen, P. Bergveld and A. J. Sprenkels, “Semiconductor-based electret sensors for sound and pressure”, IEEE Trans. Electr. Ins., vol. 24, pp. 267-276 (1989). [20] A. J. Sprenkels, R. A. Groothengel, A. J. Verloop and P. Bergveld, “Development of an electret microphone in silico”, Sensors and Actuators A, vol. 17, pp. 509-512 (1989). [21] P. Murphy, K. Hubschi, N. De Rooij and C. Racine, “Subminiature silicon integrated electret capacitor microphone”, IEEE Trans. Electr. Ins., vol. 24, pp. 495-498 (1989). [22] K. Suzuki, K. Higuchi and H. Tanigawa, “A silicon electrostatic ultrasonic transducer”, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, vol. 36, pp. 620-627 (1989). [23] J. Bergqvist and F. Rudolf, “A new condenser microphone in silicon”, Sensors and Actuators A, vol. 21-23, pp. 123-125 (1990). [24] J. Bergqvist, F. Rudolf, J. Maisano, F. Parodi and M. Rossi, “A silicon condenser microphone with a highly perforated backplate”, Proceedings of Transducers ’91, San Francisco, CA, U.S.A., June 24-27, pp. 266-269 (1991). [25] W. Kuhnel and G. Hess, “A silicon condenser microphone with structured back plate and silicon nitride membrane”, Sensor and Actuators A, vol. 30, pp. 251-258 (1992). [26] W. Kuhnel and G. Hess, “Micromachined subminiature condenser microphones in silicon”, Sensors and Actuators A, vol. 32, pp. 560-564 (1992). [27] W. Kuhnel, “Silicon condenser microphone with integrated field-effect transistor”, Sensors and Actuators A, vol. 25-27, pp. 521-525 (1991). [28] E. Graf, W. Kronast, S. Duhring, B. Muller and A. Stoffel, “Silicon membrane condenser microphone with integrated field-effect transistor”, Eurosensors VI, San Sebastian, Spain, October 5-7 (1992). [29] T. Bourouina, S. Spirkovitch, F, Baillieu and C. Vauge, “A new silicon condenser microphone with a p+ silicon membrane”, Sensors and Actuators A, vol. 31, pp. 149-152 (1992). [30] J. Bernstein, “A micromachined condenser hydrophone”, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, U.S.A., June 22-25, pp. 161-165 (1991). [31] R. Schellin and G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges”, Sensors and Actuators A, vol. 32, pp. 555-559 (1992). [32] A. G. H. Van der Donk, “A silicon condenser microphone: modeling and electronic circuitry”, Ph. D. Thesis, University of Twente (1992). [33] A. G. H. Van der Donk, P. R. Scheeper, W. Olthuis and P. Bergveld, “Amplitude-modulated mechanical feedback system for silicon condenser microphones”, J. Micromech. Microeng., vol. 2, pp. 211-214 (1992). [34] P. R. Scheeper, A. G. H. Van der Donk, W. Olthuis, and P. Bergveld, “A review of silicon microphones”, Sensors and Actuators A, vol. 44, pp. 1-11 (1994). [35] R. Schellin and G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges“, Sensors and Actuators A, vol. 32, pp. 555-559 (1992). [36] 邢泰剛, 微機電系統技術與應用, Ch. 7-4, pp. 544 (2003). [37] P. R.Scheeper, A. G. H. van der Donk, W. Olthuis, and P. Bergveld, “Fabrication of silicon condenser microphone using single wafer technology”, J. Microelectromech. Syst. vol. 1, no. 3 (1992). [38] M. Pederson, W. Olthuis and P. Bergveld, “A Silicon Condenser Microphone with Polyimide Diaphragm and Backplate”, Sensors and Actuators A, vol. 63, pp. 97-104 (1997). [39] P. Scheeper, W. Olthuis and P. Bergveld, “Improvement of the Performance of Microphones with a Silicon Nitride Diaphragm and Backplate”, Sensors and Actuators A, vol. 40, pp. 179-186 (1994). [40] P. R. Scheeper, A. G. H Van der Donk, W. Olthuis and P. Bergveld, “Fabrication of silicon condenser microphone using single wafer technology”, IEEE J. Microelectromech. Syst., vol. 1, pp. 147-154 (1992). [41] Michael Gayford ed., Microphone engineering handbook (1994). [42] G. M. Sessler and J. E. West, “Electret transducers : a review”, J. Acoust. Soc. Am., vol. 53, no. 6, pp. 1589-1600 (1973). [43] Z. Skvor, “On the acoustical resistance due to viscous losses in the air gap of electrostatic transducers”, Acustica, vol. 19, pp. 295-299 (1967/68). [44] 陳建盛, 國立交通大學電機與控制工程系碩士論文 (1999). [45] M. Mullenborn, P. Rombach, U. Klein, K. Rasmussen, J. F. Kuhmann, M. Heschel, et al., “Chip-size-packaged silicon microphones”, Sensors and Actuators A, vol. 92, pp. 23-29 (2001). [46] M. P. Norton, “Fundamentals of Noise and Vibration Analysis for Engineer”, pp. 197-200, New York:Cambridge University Press (1969). [47] A. G. H. Van der Donk, P. Bergveld and J. A. Voorthuyzen, “Optimal design of electret microphone MOSFET preamplifier”, J. Acoust. Soc. Am., vol. 91, pp. 2261-2269 (1992). [48] A. G. H. Van der Donk, J. A. Voorthuyzen and P. Bergveld, “General considerations of noise in microphone preamplifiers”, Sensors and Actuators A, vol. 25-27, pp. 515-520 (1991). [49] W. R. Bevan, R. B. Schulein and C. E. Seeler, “Design of a studio-quality condenser microphone using electret technology”, J. Audio Eng. Soc., vol. 26, pp. 947-957 (1978). [50] Microtel B. V., “Specification of electret microphone MODEL 32”, Amsterdam, June (1986). [51] Michael Pedersen, “A Polymer Condenser Microphone Realised on Silicon Containing Preprocessed Integrated Circuits” (1997). [52] M. Shikida, K. Sato, K. Tokoro, D. Uchikawa, “Comparison of anisotropic etching properties between KOH and TMAH solutions”, IEEE Micro Electro Mechanical Systems, pp. 315-320 (1999). [53] http://www.sonion.com/servlet/page?_pageid=14574&_dad=portal_e xt&_schema=PORTAL_EXT
摘要: 本論文主要是整合微機電與半導體製程技術來製作一聲音感測器,即是為純電容式微型麥克風。在研究上主要包含了兩項工作:(1)單晶片電容式麥克風之設計與模擬分析。文中利用Mathcad軟體來模擬分析麥克風各部份組成要件最佳的設計參數,藉此得到較高靈敏度之單晶片電容式麥克風。(2)純電容式微型麥克風之製程建立及其結果量測。 在製作的過程中因為所遭遇的製程問題,因此經由解決並改善後,成功地研發出利用脫離技術的方式,來研製微小化之純電容式麥克風。若以製程方式作為區分,一般目前利用微機電製程技術所製作的微型麥克風,多數為單晶片或是以晶圓接合的方式來製作,然而利用脫離的製程技術,不但可以避免傳統單晶片使用體型微加工製程繁雜又不易製作的問題,亦可避免雙晶片的高成本,且高溫鍵合可能影響整合IC電路的缺點。同時因為元件不再包含矽基板,因此將有效地縮小了整體體積,而且幾何圖形的設計更具多變性。此外,在製程上又可免於最後切割造成的元件損壞,基板亦可重複回收利用;完成後並搭配放大器於無響室內進行電容式麥克風頻率響應的量測,用以了解其操作範圍及靈敏程度。量測範圍為人耳可及的20~20 kHz,在不加訊號放大器的情況下,於1 kHz之取樣頻率並外加24 V直流偏壓下所量測約可得到-58 dBV/Pa的增益輸出,感度約為1.26 mV/Pa。然而相較於目前市場上現有的純電容式麥克風產品,美國伊利諾州Knowles Electronics LLC公司生產的產品,只需外加12 V直流偏壓便可於1 kKz下得到-41 dBV/Pa之量測值,即感度約為7.9 mV/Pa;而丹麥Sonion MEMS A/S公司所研製的純電容式麥克風產品,則只需2 V的外加直流偏壓,便可得到-40 dBV/Pa約為10 mV/Pa的高感度。因此顯示出本論文在未來感度的提昇上,將仍舊有許多尚待改進的空間。
In this work, the MEMS and semiconductor techniques to develop a new acoustic sensor, that condenser microphone was investigated. Our study mainly includes two parts: one is the design and simulation of MEMS condenser microphone and the other is the fabrication and measurement of condenser microphone. We use the software Mathcad to simulate and analyze the parts geometrical shapes of condenser microphone. By changing different parameter, we can obtain the diaphragm with better sensitivity. A successful method using the wafer transfer technique to fabricate condenser microphones was developed. Here, the MEMS microphone nowadays is distinguished by the process that includes both single-chip and wafer bonding technology. The wafer transfer technique can avoid complicated and difficult processes of bulk micromachining for single-chip structure. It can also reduce the high cost of double wafer and the possible influence that high temperature may affect the circuit, and has varied designs for the geometrical pattern. Because the microphone component doesn't include the silicon substrate, the total volume will decrease validly. Moreover, it can prevent the damage from the last dicing. The substrate can also be recycled. In order to know the dynamic range and the sensitivity of condenser microphone, the fabricated microphone is combined with the amplifier circuit, then being examined by frequency response in the anechoic chamber. The examination ranges from 20~20 kHz which human ears can receive. We pick 1 kHz and add external 24 V D.C. bias to detect the sensitivity and compared it with silicon condenser microphone. The sensitivity of MEMS condenser microphone is -58.0 dBV/Pa, it is corresponded to 1.26 mV/Pa. Generally, the sensitivity of the condenser microphone of Knowles Electronics LLC company (USA), the sensitivity is -41 dBV/Pa (it is corresponded to 7.9 mV/Pa) under 12 V D.C. bias and 1kHz. Sonion MEMS A/S company (Dk) manufactures the condenser microphone can get the total sensitivity -40 dBV/Pa, 10 mV/Pa, at the 1kHz of frequency. Therefore, these data suggest that we still have to improve the sensitivity in the future.
URI: http://hdl.handle.net/11455/4036
其他識別: U0005-0208200618102300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208200618102300
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.