Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4037
標題: 寬能隙氮化銦鎵太陽能電池之研製與效率提昇
Fabrication and Efficiency Improvements in Wide Bandgap InGaN Solar Cells
作者: 朱慕道
Chu, Mu-Tao
關鍵字: InGaN
氮化銦鎵
solar cell
pattern sapphire substrate
interdigitated imbedded electrodes
mirror structure
太陽能
圖案化藍寶石基板
無電極遮蔽
鏡面結構
出版社: 精密工程學系所
引用: Reference [1] K. A. Tsokos, "Physics for the IB Diploma", Fifth edition, Cambridge University Press, Cambridge (2008) ISBN 0521708206 [2] Perlin, John "The Silicon Solar Cell Turns 50". National Renewable Energy Laboratory. (2004). [3] Edwin Cartlidge, “Bright outlook for solar cell”, Physics World , July, 20-24 (2007) [4] Janet L. Sawin and Eric Martinot , "Renewables Bounced Back in 2010, Finds REN21 Global Report". Renewable Energy World [5] Y. Tripanagnostopoulos, Th. Nousia, M. Souliotis, P. Yianoulis, Solar Energy Vol. 72, 187-270 ( 2002) [6] R. McConnell and M. Symko-Davies, IEEE 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4) , May (2006) [7] G. Zubia, Jose L. Bernal-Agustin and G. V. Fracastoro, Renewable and Sustainable Energy Reviews, Volume 13, Issue 9, 2205-2750 ( 2009) [8] Shin-ichiro Sato, Haruki Miyamoto, Mitsuru Imaizumi, Kazunori Shimazaki, Chiharu Morioka, Katsuyasu Kawano, Takeshi Ohshima , Solar Energy Materials and Solar Cells, Vol. 93, 669-1166 ( 2009) [9] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Wart, Progress in Photovoltaics: Research and Applications, John Wiley & Sons, Ltd. Volume 19, Issue 1, January ( 2011) [10] A. Barnett, C. Honsberg, D. Kirkpatrick, S. Kurtz, D. Moore, D. Salzman, R. Schwartz, J. Gray, S. Bowden, K. Goossen, M. Haney, D. Aiken, M. Wanlass and K. Emery , "50% Efficient Solar Cell Architectures and Designs", 4th World Conference on Photovoltaic Energy Conversion, Hawaii, May 7-12 , 2560 (2006) [11] A. Barnett, D. Kirkpatrick and C. Honsberg, 21st European Photovoltaic Solar Energy Conference, Germany, September 4, (2006) [12] A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, T. Moriarty, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Milestones toward 50% efficient solar cell modules,” in Proc. 22nd Eur. PV Solar Energy Conf., Milan, Italy, Sep. (2007) [13] R. H. Horng, Y. A. Lu, and D. S. Wuu, IEEE Photon. Technol. Lett., vol. 23, no. 1, pp. 54-56, Jan. 2011. [14] M. Hansen, J. Piprek, P. M. Pattison, J. S. Spech, S. Nakamura, and S. P. Den Baars, Appl. Phys. Lett., vol. 81, no. 22, pp. 4275-4277, Nov. 2002. [15] R. H. Horng, M. T. Chu, H. R. Chen, W. Y. Liao, M. H. Wu, K. F. Chen, and D. S. Wuu, IEEE Electron Device Lett., vol. 31, no. 6, pp. 585-587, Jun. 2010. [16] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., vol. 94, no. 6, p. 063 505, Feb. 2009. [17] V. Yu Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1 (2002) [18] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002) [19] H. Hamzaoui, A. S. Bouazzi, B Rezig, Solar Energy Materials and Solar Cells (2005) Volume: 87, Issue: 1-4, Pages: 595-603 [20] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, Appl. Phys. Lett. 91, 132117, ( 2007) [21] K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, Appl. Phys. Lett.96, 081103, ( 2010) [22] M. Hansen, J. Piprek, P. M. Pattison, J. S. Spech, S. Nakamura, and S. P. Den Baars, Appl. Phys. Lett., vol. 81, no. 22, pp. 4275-4277, Nov. (2002) [23] B. R. Jampana, A. G. Melton, M. Jamil, N. N. Faleev, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, IEEE Electron Device Lett. 31, 32 (2010) [24] S. W. Zeng, X. M. Cai, and B. P. Zhang, IEEE J. Quantum Electron. 46, 783, (2010) [25] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion. Oxford, U.K.: Oxford Univ. Press, (1992). [26] Islam, M.S. Zillur Rahman, A.K.M. Chowdhury, M.A.R. Islam, M.R. Bhuiyan, A.G., International Conference on Electrical and Computer Engineering, 2008.( ICECE 2008), 578 - 581, E-ISBN: 978-1-4244-2015-5 [27] Wen Bo, Zhou Jianjun ,Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, and Zheng Youdou, Chinese Journal of Semiconductors, 09 (2007) [28] J. Elsner, R. Jones, P. K. Sitch, V. D. Porezag, M. Elstner, T. Frauenheim, M. I. Heggie, S. Öberg, and P. R. Briddon, Phys. Rev. Lett., vol. 79,No. 19, 3672-3675, Nov. (1997) [29] D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, J. Crystal Growth, Vol. 303, No. 1, 314-317, Jan. (2007) [30] Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, Appl. Phys. Exp., Vol. 4, No. 2, 021 001, Jan. (2011) [31] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, IEEE Electron Device Lett., Vol. 30, No. 3, 225-227, Mar. (2009) [32] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett.,Vol. 93, No. 14, 143 502-1- 143 502-3, Oct. (2008) [33] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, Appl. Phys. Lett., Vol. 91,No. 13, 132 117-1-132 117-3, Sep. (2007). [34] X. Chen, K. D. Matthews, D. Hao, W. J. Schaff, and L. F. Eastman, Phys. Stat. Sol. (A), vol. 205, no. 5, 1103-1105, May (2008) [35] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett., vol. 73, no. 7, 975-977, Aug. (1998) [36] R. H. Horng, C. E. Lee, S. C. Hsu, S. H. Huang, C. C.Wu, C. Y. Kung, and D. S.Wuu, Phys. Stat. Sol., vol. 201, no. 12, 2786-2790, Sep. (2004) [37] W. S. Wong, T. Sands, N. W. Cheung, M. Keissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett., vol. 77, no. 18, 2822-2824, Oct. (2000) [38] K. Iida, T. Kawashima, A. Miyazaki, H. Kasugai, S. Mishima, A. Honshio, Y. Miyake, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, J. Cryst. Growth, vol. 272, no. 1-4, 270-273, Dec. (2004) [39] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, Appl. Phys. Lett., vol. 89, no. 16, 161 105, Oct. (2006) [40] D. S. Wuu, H. Y. Wu, S. T. Chen, T. Y. Tsai, X. Zheng, and R. H. Horng, J. Cryst. Growth, vol. 311, no. 10, pp. 3063-3066, May (2009) [41] Daryl R. Myers, Keith Emery and C. Gueymard, National Renewable Energy Laboratory (NREL), NREL/CP-560-32284 May (2002) [42] Lindholm, F. A., J. G. Fossum, and E. L. Burgess, IEEE Transactions on Electron Devices, vol. 26, no. 3, pp. 165-171 (1979) [43] Sinton, R. A., and A. Cuevas, Applied Physics Letters, vol. 69, no. 17: AIP, pp. 2510-2512 (1996) [44] Baruch, P., A. De Vos, P. T. Landsberg, and J. E. Parrott, Solar Energy Materials and Solar Cells, vol. 36, pp. 201-222 (1995) [45] Green, M. A., "Solar cell fill factors: General graph and empirical expressions", Solid-State Electronics, vol. 24, issue 8, pp. 788 - 789 (1981) [46] Lasnier, F., and T. Ang. “Photovoltaic Engineering Handbook”, New York: American Institute of Physics (1990) [47] K. Osamura, K. Nakajima, and Y. Murakami, Solid State Commun., vol. 11, pp. 617 (1972). [48] K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys., vol. 46, pp. 3432 (1975). [49] T. Nagatomo, K. Kuboyama, H. Minamino, and O. Omoto, Jpn. J. Appl. Phys., vol. 28, p. L1334 (1989). [50] N. Yoshimoto, T. Matsuoka, and A. Katsui, Appl. Phys. Lett., vol.59, pp.2251 (1991). [51] E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. Doolitle, M. Cheung, and A. Cartwright, J. Cryst. Growth, 288, 218 (2006) [52] P. King, T. Veal, C. P. Jefferson, C. McConville, H. Lu, and W. Schaff, Phys. Rev. B, 75, 115312 (2007) [53] B. Beaumont, P. Vennegues, and P. Gibart, Phys. Stat. Sol. (B), 227, 1, 1 (2001) [54] A. Usui, H. Sunakawa, K. Kobayashi, H. Watanabe, and M. Mizuta, in Proc. Mater. Res. Soc. Symp., 639, G5.6.1 (2001) [55] T. S. Zheleva, S. A. Smith, D. B. Thomson, K. J. Linthicum, P. Rajagopal, and R. P. Davis, J. Electron. Mater., 28, 4, L5 (1999) [56] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, Phys. Stat. Sol. (A), 188, 1, 121 (2001) [57] X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, Appl. Phys. Lett., 93, 26, 261108-1 (2008) [58] R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, IEEE Electron Device Lett., 30, 7, 724 (2009) [59] C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, N. A. EI-Masry, and L. H. Robins, Appl. Phys. Lett., 75, 2566 (1999) [60] O. Jani, C. Honsberg, Y. Huang, J.-O. Song, I. Ferguson, G. Namkoong, E. Trybus, A. Doolittle, and S. Kurtz, Proceedings of the Fourth World Conference on Photovoltaic Energy Conversion, Hawaii, 7-12 , 20 (2006) [61] C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett., 66, 20, 2712 (1995) [62] R. Liu, J. Mei, F. A. Ponce, Y. Narukawa, H. Omiya, and T. Mukai, “Physics of semiconductors”, p.215, 27th International Conference on the Physics of Semiconductors, ICPS-27, Flagstaff, Arizona, 26-30 July, ( 2004) [63] O Ambacher, J. Phys. D: Appl. Phys. 31, 2656 (1998) [64] F.K. Yam, Z. Hassan. Superlattices and Microstructures, Volume 43, Issue 1., Jan( 2008)
摘要: 本論文利用有機金屬化學氣相沉積系統於藍寶石基板上磊晶生長P-氮化銦鎵/i-氮化銦鎵(In0.1Ga0.9N) /n-氮化鎵雙異質接面結構的太陽能電池並研究討論其特性。研究結果發現最佳之電池結構在AM1.5標準的測試條件下開路電壓約為 2.1 eV和填充因子為81%,且從高解析X射線繞射和光致發光的測量皆未觀察到相分離現象。 論文中使用雷射剝離技術移除藍寶石基板,將其餘的p-i-n結構透過晶圓接合技術將磊晶膜轉移到具有鈦/銀鏡面結構的矽基底上。此一薄膜型鏡面反射的結構,可增強氮化銦鎵太陽能電池較薄吸收層光的二次吸收,電流密度可增加57.6%,轉換效率從0.55%提升到0.80%。 另一方面,本論文設計無電極遮蔽之n-GaN/i-InGaN/p-GaN太陽電池結構,使得照光表面因電極產生遮蔽得以降低甚至消失,使得同樣面積元件可以接收更多的太陽輻射能。更進一步對n-GaN surface進行粗化製程,將整個 n-side up面粗化,去除p-side up面之指叉狀電極,如此可避免其電極遮蔽所造成的入射光比例降低。太陽能電池具有轉換效率為 1.03%,分別較傳統結構及p-side up 結構提升78%和47%。n-side up無電極遮蔽元件的短路電流密度為0.65 mA/cm2,也分別較傳統結構及p-side up 結構提升71%和44%。 此外,本論文亦對雙異質接面In0.037Ga0.963N /i-In0.17Ga083N/n-GaN太陽電池分別以磊晶成長於傳統(conventional sapphire substrate, CSS)及圖案化藍寶石基板 (pattern sapphire substrate, PSS)上進行磊晶薄膜特性及太陽電池元件效率分析比較。太陽電池元件特性上較顯著的變化為短路電流密度 (JSC)的提昇,在PSS基板上成長之氮化銦鎵太陽電池較成長於CSS基板則可獲得約 27.6%的短路電流密度增益。此短路電流密度的增益來自於圖案化藍寶石基板於磊晶薄膜差排缺陷密度 (dislocation defect density)上的改良及藉由圖案化表面對入射太陽光進行散射 (scattering) 來增加有效光傳輸路徑,進而提昇光吸收效率所得。
URI: http://hdl.handle.net/11455/4037
其他識別: U0005-0902201210323800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0902201210323800
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.