Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4045
標題: 聚焦型傾斜微透鏡陣列製程研究
Fabrication Study of Focusing Asymmetric Microlens Array
作者: 劉懿仁
Liu, Yi-Jen
關鍵字: asymmetric microlens array
非對稱微型透鏡陣列
off-axis photoresist structure
offset-alignment technique
curve-fitting
focusable area
疊加製程
偏移對位
球形曲線耦合
聚焦區域
出版社: 精密工程學系所
引用: [1] T. H. Lin, H. Yang and C. K. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsystem Technologies, 13, pp.1537-1543, 2007. [2]S. Y. Hung, C. P. Lin, H. Yang, and Y. P. Chang "Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts," Optical Engineering, 46(4), 043402-1~8, 2007. [3] T. H. Lin, S. Y. Hung, H. Yang and C. K. Chao, “Fabrication of a microlens array electroformed mold with low roughness and high hardness,” Journal of Micromechanics and Microengineering, 17, 419-425, 2007. [4] H. Yang, R. F. Shyu, J. W. Huang, “New production method of convex microlens arrays for integrated fluorescence microfluidic detection systems,” Microsystem Technologies, vol. 12, pp. 907-912, 2006. [5] J. Gan, L. Wu, H. Luan, B. Bihari, and R. T. Chen,“ Two-imensionalsurface-normal microcoupler array for guide-wave optical clock distribution,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 11, no.11, pp.1452-1454, 1999. [6] I. Mikulskas,“ Fabrication of photonic structures by means of interference lithography and reactive ion etching,” Applied Surface Science, Vol. 186, pp.599-603, 2002. [7] F. Ko, J. Chen, F. Chang,“ Fabricating and characterizing oblique polymer structures by electron beam writing on resist-coated SiO2 wafers," Microelectronic Engineering, Vol. 83, pp. 1132-1137, 2006. [8]吳昭雄,“浸入式傾斜曝光製作複合光學微結構之研究”,碩士論文,2007. [9] C. C. A. Chen, C. M. Chen, J. R. Chen,“ Tool path generation for diamond shaping of aspheric lens array,” Journal of Materials Processing Technology, vol. 192-193, pp. 194-199, 2007.   [10] S. S. Hsu, H. Yang,“ High Fill-factor Microlens Array Fabrication Using Proximity Printing with the Microlens Array Mask,” International Symposium on Robotics and Intelligent Sensors, March, 2010. [11] J. J. Yang,“ The Study of LIGA Like Fabrication Process for Refractive/Diffractive Microlens”, 畢業論文, 2007. [12] J. J. Yang, Y. S. Liao and C. F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Optics Communications 270, p.p. 433–440, 2007. [13] A. Schilling, R. Merz, C. Ossmann and H. P. Herzing, “Surface Profiles of Reflow Microlenses under the Influence of Surface Tension and Gravity”, Optical Engineering, Vol. 39, No. 8, pp. 2171-2176, 2000. [14] S. A. Campbell, “The science and engineering of microelectronic fabrication”, p.p. 195-196, 2001. [15] 許泳順,“表面張力及重力對光阻熱熔成型形貌影響之探討” ,畢業論文,民國九十五年 [16] E. Hecht, Optics Fourth Edition, Addison Wesley, pp.95-100, 2002. [17] 鍾明昌,“以熱整形方法形成微透鏡陣列之機制探討與應用”,碩士論文,2004. [18] Activities of Exhibition and Education in Astronomy,AEEA天文教育資訊網,http://aeea.nmns.edu.tw/index1.html [19] 薩本棟,普通物理學,第 876~882 頁,中華教育文化基金董事會編輯委員會,台灣商務印書館,民國四十九年 [20] 李冠卿,近代光學,第 18-20 頁,聯經出版事業公司,民國七十七年 [21] 耿繼業,何建娃,幾何光學,全華科技圖書股份有限公司,民國九十三年 [22] B. Shapiro, H. Moon, R. L. Garrell and C. J. Kim, “ Equilibrium Behavior of Sessile Drops under Surface Tension, Applied External Fields, and Material Variations”, Journal of Applied Physics, Vol. 93, No.9, pp. 5794-5811, 2003. [23] 陶雨台,表面物理化學,千華出版公司,1988 [24] 莊達人,VLSI製造技術,高立圖書有限公司,2000。
摘要: 本研究的目標為開發具有特定傾斜角度、非法線影像擷取特性之新式非對稱微型透鏡陣列,經由黃光微影製程採用新設計疊加製程,利用多次黃光微影步驟,使用經設計之光罩,配合創新的偏移對位技術,製作一傾斜塔狀光阻結構,經由熱整形步驟可形成一非對稱傾斜透鏡。論文中將就製程中使用之光罩順序、對位偏移量及熱熔參數等實驗控制變因,探討其對於非對稱傾斜透鏡形貌各特徵,包括傾斜角度、透鏡高度之影響。另一方面,由於此論文所製作之非對稱傾斜微透鏡乃應用於聚焦成像用途。故在探討其透鏡外貌同時,也將以軟體分析3D共軛聚焦顯微鏡之表面輪廓數據,就球形曲線耦合找出非對稱傾斜透鏡之可聚焦區域。論文中使用之製程已成功製造出鏡高達25μm,形貌傾斜角度5°~26°,透鏡可聚焦區開口直徑為70μm之非對稱透鏡陣列。
The aim of this study was developing a novel asymmetric microlens array with specific inclined angles and non-normal line imagery capture feature. In the experiments, several designed mask were used in photolithography processes with innovative offset alignment technique for fabricating off-axis photoresist structure. Through thermal-reflow process, the structure will turn into asymmetric microlens. This paper derived the relationship between controlling variable factors and asymmetric microlens array profile, such as inclined angle and lens sag height. In this study, the controlling variable factors contained masks choosing, offset alignment displacement and photoresist thermal reflow time. On the other hand, due to the microlens array in this thesis was fabricated to apply for focus imaging or signal processing in optics, therefore, we analyzed the microlens profile data with curve-fitting method to find focusable area of microlens. In this thesis, the asymmetric microlens array with inclined angles between 15° to 26°, lens sag height 25μm, focusable area up to 3800μm2 have been produced successfully.
URI: http://hdl.handle.net/11455/4045
其他識別: U0005-1808201116303100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201116303100
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.