Please use this identifier to cite or link to this item:
標題: 尺度效應下金屬薄膜在槳型懸臂樑動態響應之行為與材料機械性質之探討
Study on the mechanical behavior of thin metal film using dynamic response of paddle cantilever beam
作者: 陳冠綸
Chen, Guan-Lun
關鍵字: Internal friction
Mechanical behavior of thin films
Dynamic response
出版社: 精密工程學系所
引用: [1]A.S.Nowick and B.S.Berry,”Anelastic relaxation in crystalline solids”, Materials Science Series, pp.1-28,(1972) [2]陳建人,微機電系統技術與應用 Micro Electro Mechanical Systems Technology & Application,全華科技圖書公司(2003) [3]Clark T.-C. Nguyen “RF MEMS in Wireless Architectures” DARPA/MTO , pp 416-420,(2005) [4] [5]馮端,A Dictionary of Solid State Physics,建宏出版社(1998) [6]T’ing-Sui Ke ̂, “Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals,” Physical Review, Vol. 71, No. 8,pp. 533-545(1947) [7]T’ing-Sui Ke ̂ and Marc Ross, “An Apparatus for Measurement of Extremely High Internal Friction,” The Review of Scientific Instruments, Vol. 20, No. 11,pp. 795-799(1949) [8]Gerald P. Weiss and Donald O. Smith, “Measurement of Internal Friction in Thin Films,” The Review of Scientific Instruments, Vol. 34, No. 5,pp.522-523(1963) [9]Li Jian and M. Wuttig, “An Approach to Measuring Stress of Thin Film on Si Cantilever by Carrier Frequency,” Acta Metallurgica Sinica, Vol.39, No. 11,pp. 1225-1227(2003) [10] [11]V. Domnich and Y. Gogotsi, “Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon,” Applied Physics Letters, Vol. 76, No. 16,pp.2214-2216(2000) [12] [13]T’ing-Sui Ke ̂, “Stress Relaxation across Grain Boundaries in Metals,” Physical Review, Vol. 72,No. 1,pp. 41-46(1947) [14]C. Zener, “Internal Friction in Solids I. Theory of Internal Friction in Reeds,” Physical Review, Vol. 52,pp. 230-235(1937) [15]C. Zener, “Internal Friction in Solids II. General Theory of Thermoelastic Internal Friction,” Physical Review, Vol. 53,pp. 90-99(1938) [16]C. Zener, “Internal Friction in Solids III. Experimental Demonstration of Thermoelastic Internal Friction,” Physical Review, Vol. 53,pp.100-101(1938) [17]S. Shimizu, T. Miyamoto, K. Kirimoto and Y. Sun, “Characterizations of C60 Films by Measuring Internal Friction,” Proceedings of Symposium on Ultrasonic, Vol. 30,pp. 435-436(2009) [18]M. Wuttig, J. Li and C. Craciunescu, “A New Ferromagnetic Shape Memory Alloy System,” Scripta mater. ,Vol.44,No. 10,pp.2393-2397(2001)
摘要: 本實驗以真空系統搭配電容值量測方法及靜電力驅動方式,探討黏附於矽基板上之金屬薄膜材料動態響應行為與材料機械性質。實驗量測所使用之薄膜載具是一可產生均勻應力分佈之新型微槳型結構樑(Paddle cantilever),因此可提高量測結果的準確性。研究中以靜電力施加負載於量測試件上並利用電容值的改變量獲得試件之形變量,之後結合力學理論進而測得薄膜材料之機械性質。此實驗使用自由衰減的方式對不同厚度之銀薄膜內耗之結果並驗證懸臂樑結構用於此振動量測之可行性與準確性。
Over this experiment, we studied the dynamic response behavior and material mechanical properties of metal thin films by combining the capacitance measurement method and the static electric drive system, installing both into the vacuum chamber, The film carrier (micro-paddle-type structure beam) is specifically designed for experiments. When the sample is bending, the stress generates by uniform distribution. Therefore, it can improve the accuracy of measurement results. Applying load with static electricity and changes in capacitance measured to obtain the displacement of the specimen. This experiment uses a free decay mode, while the resonant mode of silver thin films of different thicknesses measures internal friction and verifies the exclusive designed structure suitable for the vibration measurements.
其他識別: U0005-1908201117074700
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.