Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4050
標題: 不同構裝結構對近紫外光發光二極體激發綠色螢光體出光效率之研究
Effect of Phosphor Package Structure on Green Light Output Excited by Near-Ultraviolet Light-Emitted Diodes
作者: 陳佑吉
Chen, Yu-Chi
關鍵字: Near-Ultraviolet LEDs
近紫外光發光二極體
Phosphor
Package Configuration
螢光體
構裝結構
出版社: 精密工程學系所
引用: 參考文獻 [1] 劉如熹, 紀喨勝, “紫外光發光二極體用螢光粉介紹”, 全華科技圖書股份有限公司, 2005。 [2] 吳建昌, “LED Lighting ─ LED 照明”, 工業材料雜誌, No. 208,p156, 2004。 [3] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, R. K. Wu, “White-Light Emission From Near UV InGaN-GaN LED Chip Precoated With Blue/Green/Red Phosphors”, IEEE Photon. Tech. Let. Vol. 15, No.1, 2003. [4] C. H. Kuo, J. K. Sheu, S. J. Chang, Y. K. Su, L. W. Wu, J. M. TSAI, C. H. Liu and R. K. Wu, “n-UV+Blue/Green/Red White Light Emitting Diode Lamps”, Jpn. J. Appl. Phys. Vol. 42, p2284, 2003. [5] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency”, Phys.Stat. sol (a). 202, No. 6, R60, 2005. [6] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Song and Y. Park, “Strongly Enhanced Phosphor Efficiency in GaInN White Lingt-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup”, Jpn. J. Appl. Phys. Vol. 44, No. 21, 2005. [7] 田口常正, “白色LED照明システム技術の應用と将來展望”, シ-エムシ-, p.179, 2003. [8] 林志勳, “白光LED用螢光粉發展趨勢與展望”, ChemNET化工商情網. [9] 康佳正, 劉如熹, 廖秋峰, “LED照明光源展望六:可被UV LED激發之螢光體介紹”, 工業材料雜誌, No. 232, p. 144, 2006. [10] 曾俊州, “發光二極體製造業基本資料”, 台灣經濟研究院產經資料庫, 2006. [11] 戴學斌, 陳耀忠, 黃文啟, 黃焜銘, “不同EMC 封裝材料與抗沾黏薄膜之沾黏力研究”, 工業材料雜誌, No. 212, p.170, 2004. [12] 張文耀, ”螢光膠體膜層對白光二極體發光強度的影響研究”, 台北科技大學材料及資源工程系所碩士論文, 2005. [13] Nichia, 專利WO03080764, 2004/06. [14] Osram, 專利US6649946, 2001/6. [15] 陳中豪, 蔣培瑜, “光源色度測量原理”, 工業材料雜誌, No. 208, P.108, 2004. [16] 未來產研(光電科技雜誌), “白光LED技術發展”, 光電科技月刊, P.15, 2006. [17] 李建宇, “稀土發光材料及其應用”, 化學工業出版社, p.21, 2003. [18] 盧慶儒, “白光LED照明時代來臨日本發表量測標準”, DigiTimes科技網, 2006. [19] D. A. Steigerearld, J. C. Bhat, D. Collins, R. M. Flwtcher, M. W. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology", IEEE J. Sel. Top. Quantum Electron. Vol. 8, p.310, 2002. [20] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, ”High-power phosphor-converted light-emitting diodes based on lll-Nitrides”, IEEE J. Sel. Top. Quantum Electron. Vol. 8, p339, 2002. [21] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes”, Appl. Phys. Lett. Vol. 86, 243505, 2005. [22] H. Masui, S. Nakamura, and S. P. Denbaars, “Effects of Phosphor Application Geometry on White Light-Emitting Diodes”, Jpn. J. Appl. Phys. Vol. 45, No. 34, L910, 2006. [23] 張賢利, 李福生, 方道腴, “螢光粉層-氧化鋁保護膜曾光學特性的研究”, 燈與照明, 第24卷, 第6期, p.51, 2000.
摘要: 摘要 在白光發光二極體多種製作方式中,利用螢光體轉換波長的模式已經廣泛被應用。由於傳統螢光體轉換模式是將螢光體散佈於晶粒周圍其會對構裝後的發光效率與亮度展現有負面的影響。本論文採用近紫外光發光二極體結合螢光體轉換模式,藉由(1)當螢光體層在構裝結構中位置變化時、(2)當螢光體層中粉體濃度改變時、(3)當螢光體層的灌膠厚度變化時,探討其構裝後整體的輸出功率。 本論文採用以波長400 nm,發光強度為2100 mcd,工作電流為350 mA,順向電壓為3.5 V的InGaN晶片搭配綠色螢光體(SrAl2O4:Eu),製成綠光發光二極體。當螢光體層位於導線架上緣時,整體構裝結構輸出功率為最佳化其值是54.2 mW。當螢光體層中環氧樹酯與螢光粉的配比在1:0.3時,整體構裝結構輸出功率為54.81 mW最佳化。當螢光體層的灌膠厚度為290 μm時,整體構裝結構最佳化輸出功率為50.5 mW。在注入較高電流時,色度座標的x、y值變動幅度變小,電流慢慢提升,發光效率逐漸下降但其結構之發光效率為最優。利用光學模擬軟體模擬螢光體層在構裝結構中不同位置對元件出光效率的影響,在模擬過程中可以顯示螢光體層的塗佈位置遠離近紫外光發光二極體晶粒的構裝模式具有較高的出光效率。 本論文證明採用螢光體層的塗佈位置遠離近紫外光發光二極體晶粒的構裝模式及螢光體層適當的厚度和濃度有助於提升元件的發光效率,可以作為我國業界在發光二極體提升取光效率的參考。
Abstract The approach of phosphor-converted white light-emitting diodes (LEDs) has been commercialized for various applications. It is well known that the conventional phosphor package for white LEDs has negative effects on the luminous efficiency and brightness because of the phosphor just nearby the bare chip. This thesis describes an experimental study of the near-ultraviolet LED and green phosphor under various package configurations such as various phosphor layer position, various phosphor concentration in epoxy and various phosphor thicknesses. In this study, the InGaN LED chip with a wavelength of 400 nm, luminance intensity of 2100 mcd and operation voltage of 3.5 V(@If=350 mA)is employed to excite the green phosphor (SrAl2O4: Eu). When the phosphor layer was designed just on the top of the lead frame, an optimum output power of 54.2 mW can be obtained in this packaging configuration. It was found that the LED output power can be optimized under an epoxy to phosphor ratio of 1:0.3. When the thickness of the phosphor layer increased from 220 to 290 μm, the LED output power can increase from 43.2 to 50.5 mW. To further study the LED package configuration, a TracePro software was used to simulate the position effect on the luminous efficiency of the LED samples. It is demonstrated that the coating position of phosphor layer away from the LED bare chip, adequate thickness and concentration of phosphor layer can enhance the luminous efficiency. Good correlation between the package configuration and phosphor-converted LED performance was confirmed in this research.
URI: http://hdl.handle.net/11455/4050
其他識別: U0005-0502200720360200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0502200720360200
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.