Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4051
標題: 砷化鎵薄膜太陽能電池與基板再利用技術之研發
Study on Thin Film GaAs Solar Cells and Substrate Reused Technologies
作者: 黎家豪
Li, Chia-Hao
關鍵字: Epitaxial lift-off
砷化鎵太陽電池
recycled substrate
thin film solar cell
薄膜型太陽電池
基板再利用
出版社: 精密工程學系所
引用: [1] 小長井誠、瀨川浩司、桑野幸德、一木修、田路和幸,Eric Weber, “太陽能發電”,Newton量子科學雜誌,第26號,第18-75頁, 2009。 [2] Vittorio E. Pareto, Marcos P. Pareto. "The Urban Component of the Energy Crisis". Retrieved, 2008. [3] 翁谷松、劉乃元、彭成鑑、洪健龍,“太陽光電材料產業現況與發展機會”,工業材料雜誌,第255期,第124-135頁,2008。 [4] A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells”, J. Phys. D: Appl. Phys., vol. 13, p 839-846, 1980. [5] 戴寶通、鄭晁忠,“太陽能電池技術手冊”,台灣電子材料與元件協會發行出版,台灣,2008。 [6] B. Burnett, “The Basic Physics and Design of III-V Multijunction Solar Cells”, the NREL’s III-V research, 2002. [7] D. C. Law, R. R. Kinga, H. Yoona, M. J. Archerb, A. Bocaa, C. M. Fetzera, S. Mesropiana, T. Isshikia, M. Haddada, K. M. Edmondsona, D. Bhusaria, J. Yena, R. A. Sherifa, H. A. Atwaterb, and N. H. Karama, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems”, Solar Energy Materials and Solar Cells, vol. 94, p. 1314, 2010. [8] C. M. Fetzer, R. R. Kinga, P. C. Coltera, K. M. Edmondsona, D. C. Lawa, A. P. Stavridesa, H. Yoona, J. H. Ermera, M. J. Romerob, and N. H. Karama, “High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE”, J. Cryst. Growth, vol. 261, p 341, 2004. [9] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, D. D. Krut, J. H. Ermer, R. A. Sherif, and N. H. Karam, “Advances in High-Efficiency Multijunction Solar Cells”, Advances in OptoElectronics, vol. 2007, p. 29523, 2007. [10] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett., vol. 90, p. 183516, 2007. [11] J. F. Geisz, Sarah Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl, “High-efficiency GaInP/GaAs/InGaAs triplejunction solar cells grown inverted with a metamorphic bottom junction”, Appl. Phys. Lett., vol. 91, p. 023502, 2007. [12] H. Yamaguchi, N. Takahashi, T. Kodama, R. Izichi, H. Washio, K. Nakamura, T. Takamoto, M. Imaizumi, M. Takahashi, K. Shimazaki, and K. Kibe, “Development status of Space Solar Sheet”, Photovoltaic Specialists Conference, 2008. PVSC ''08. 33rd IEEE, p. 3, 2008. [13] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., 80, p. 3967, 2002. [14] D. A. Neamen, “Semiconductor Physics and Devices”, the McGraw Hill Companies, New York, 2002. [15] S. M. Sze, “Semiconductor Devices Physics and Technology”, New York, Wiley, 2003. [16] C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, J. Appl. Phys., vol. 51, p. 4494, 1980. [17] M. A. Green, “Solar cells: Operating principles, technology, and system applications”, Univ. of New South Wales, Prentice Hall, Englewood Cliffs, NJ, 1982. [18] M. P Thekackra, “The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report, 1970. [19] 蔡進譯, “超高效率陽電池”, 物理雙月刊, 第廿七卷五期, 第701頁, 2005. [20] D. A. Neamen, “Semiconductor Physics and Devices”, the McGraw Hill Companies, New York, 2002. [21] 李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, 台灣, 2002. [22] M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process”, IEEE Trans Electron Devices, vol. 31, p. 671, 1984. [23] A. Piotrowska, A. Guivarc''h, and G. Pelous, “Ohmic Contacts to III-V Compound Semiconductors: A Review of Fabrication Techniques”, Solid State Electronics, vol. 26, p. 179, 1983. [24] M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process”, IEEE Trans Electron Devices, vol. 31, p. 671, 1984. [25] 紀國鐘, 蘇炎坤, “光電半導體技術手冊”, 台灣電子材料與元件協會出版, 台灣, 2002. [26] Gregory S. Marlow and Mukunda B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance”, Solid-State Electronics Vol. 25, No. 2, p. 91, 1982. [27] 陳立俊, 張立, 梁鉅銘, 林文台, 楊哲人, 鄭晃忠, “材料電子顯微鏡學”, 國家實驗研究院儀器科技研究中心, 台灣, 1990. [28] 高至鈞, 汪建民, “材料分析”, 中國材料科學學會, 台灣, 1998. [29] M. J. Ludowise, “Metalorganic chemical vapor deposition of III-V semiconductors”, J. Appl. Phys, vol. 58, p. R31, 1985. [30] O. Feron, M. Sugiyama, W. Asawamethapant, N. Futakuchi, Y. Feurprier, Y. Nakano, and Y. Shimogaki, “MOCVD of InGaAsP, InGaAs and InGaP over InP and GaAs substrates: distribution of composition and growth rate in a horizontal reactor”, Appl. Surf. Sci., vol. 159-160, p. 318, 2000. [31] 鄧建龍、姚潔宜、張茂男, “X-ray Diffraction Utilized in the Semiconductor Industry,” Nano Communicaion, p. 15, 4, 2008. [32] 陳隆建, “發光二極體之原理與製程,” 2006.
摘要: 本論文藉由化學選擇性蝕刻及十字型蝕刻道重複製備薄膜砷化鎵太陽電池,探討砷化鎵薄膜太陽電池特性,以及使用再生基板製作之薄膜砷化鎵太陽電池元件特性。 薄膜型太陽電池是利用氫氟酸溶液側向蝕刻砷化鋁犧牲層的方式,將太陽電池結構轉移至具有十字型蝕刻道的鎳金屬基板上,電鍍法製備之鎳基板具有良好導熱、導電係數以及低應力等特性,適合做為砷化鎵太陽電池之轉移基板,十字型蝕刻道設計可大幅縮短側向蝕刻時間,以1mm2的元件面積為例,僅需約二小時左右,即可將之兩吋薄膜型砷化鎵太陽電池完整轉移至鎳基板上。在基板再利用製程中,本論文在砷化鎵基板與元件層中間加入二層磊晶結構(緩衝層、蝕刻停止層)作為基板保護層,當薄膜型砷化鎵太陽電池分離基板後,透過不同蝕刻選擇比之溶液移除基板保護層,即得到可再利用的砷化鎵基板。 經由原子力顯微鏡檢測再生基板的表面粗糙度,發現砷化鎵再生基板的表面粗糙度隨著再利用次數增加而逐漸上升,由全新砷化鎵基板的0.301nm上升至回收一次後的0.501nm和回收二次後的1.361nm;薄膜型砷化鎵太陽池開路電壓也由全新基板成長的0.95V,下降至一次再利用製程後的0.76V和兩次再利用製程後的0.66V;經由表面粗糙度檢測和薄膜砷化鎵電池電性量測發現,砷化鎵磊晶膜品質隨著基板表面粗糙度上升而劣化,進而降低薄膜砷化鎵太陽電池效率。
This thesis focuses on fabrication of thin-film solar cell via cross-shaped pattern epitaxial lift-off (CPELO) technology. The device performance of different recycled times thin-film GaAs solar cell will be discussed and compared. The cross-shaped pattern array is used to define cell size and provide the etch path of etchant solution. The AlAs sacrificial layer is etched by hydrofluoric acid etchant through the cross-shaped hole. The CPELO technique does not require a temporary carrier substrate to transfer the epilayers because the desired carrier substrate is directly deposited onto the backside of epilayers before the epitaxial lift-off process. The desired carrier, the electroplate nickel substrate, can be contacted directly to the epilayer without wax or low-viscosity epoxy. The release time of the 2-inch wafer with 1mm2 cell sizes is about 2 hours. After CPELO process, the separated GaAs substrate can be recycled via chemical cleaning. The substrate degradation after lift-off was investigated using atomic force microscopy (AFM). The surface roughness is about 0.30 nm for new wafers and 0.50nm, 1.36nm after first and second substrate reused. With the increased roughness, the thin-film solar cell reduced in open-circuit voltage (Voc) in one-sun AM 1.5G light source. The Voc of thin-film cell separated from new GaAs substrate is 0.95 V. Compared to thin-film cells separated from first and second recycled GaAs substrate are 0.76 V and 0.66 V, respectively. Reused GaAs substrate surface roughness will lead to reduce the quality of epitaxy layer and also deteriorate the thin-film cell efficiency.
URI: http://hdl.handle.net/11455/4051
其他識別: U0005-2008201117013600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201117013600
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.