Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4053
標題: 以微拉伸試驗探討微奈米銅薄膜尺度與疲勞振幅之關係
Study on amplitude and thinkness effects on fatigue behavior of micro-nano scale copper thin films
作者: 曾偉庭
Tseng, Wei-Ting
關鍵字: microtensile
微拉伸
copper thin films
fatigue
amplitude
銅薄膜
疲勞
振幅
出版社: 精密工程學系所
引用: 參考文獻 [1] 周志鴻 “2010舊金山WSTS秋季市場預測會議報導” 台灣半導產業協會簡訊,no. 55,pp. 23-24 (2011)。 [2] http://tw.money.yahoo.com/report_article/adbf/d_a_070929_2_mekv [3] C. T. -C. Nguyen, L. P. B. Katehi, G. M. Rebeiz “Micromachined devices for wireless communications (invited)” Proc. IEEE, vol. 86, no. 8, pp. 1756-1768, Aug. 1998. [4] 翁敏航,林育德,陳永祥,戴寶通 “電容式橋型射頻微機電切換器之設計” 奈米通訊,第十二卷第一期。 [5] E. O. Hall, Proc. Phys. Soc. London 643, 747 (1951). [6] R. P. Vinci and J. J. Vlassak “Mechanical behavior of thin films” Annu. Rev. Mater. Sci. 26, pp. 62-431 (1996). [7] Ferdinand P. Beer, E. Russell Johnston Jr, John T. DeWolf, “Mechanicsofmaterials” McGraw-Hall Companies (2002). [8] http://www.testingmachine.com.tw/tw/showroom.html [9] http://www.tiscnet.org.tw/readtech.php?pr_type=6&no=144 [10] S. Kamiya, J. H. Kuypers, A. Trautmann, P. Ruther, and O. Paul “Process temperature–dependent mechanical properties of polysilicon measured using a novel tensile test structure” J. Microelectromechanical systems, vol. 16, no. 2, April 2007. [11] S. Kamiya, S. Amaki, T. Kawai, N. Honda, P. Ruther, J. Gaspar and O. Paul “Seamless interpretation of the strengthand fatigue lifetime of polycrystalline silicon thin films” J. Micromech. Microeng. 18 (2008). [12] J. Gaspar, M. E. Schmidt, J. Held, and O. Paul “Wafer-scale microtensile testing of thin films” J. Microelectromechanical systems, vol. 18, no. 5, Oct. 2009. [13] D. T. Read and J. W. Dally “Fatigue of microlithographically patterned free-standing aluminum thin film under axial stresses” J. Electron. Packag. vol. 117, pp. 1–6 (1995). [14] G. P. Zhang, K. Takashima, M. Shimojo, and Y. Higo “Fatigue behavior of microsized austenitic stainless steel specimens” Mater. Lett. vol. 57, pp. 1555–1560 (2003). [15] 蔡木村,陳伯宜,林淳杰,曾春杰 編譯 “機械冶金(第三版)” 第十二章,全科技圖書股份有限公司印行。 [16] D. T. Read “Tension-tension fatigue of copper thin films” Int. J. Fatigue. vol. 20, no. 3, pp. 203-209 (1998). [17] S. Kwofie “An exponential stress function for predicting fatigue strength and life due to mean stresses” Int. J. Fatigue. vol. 23, no. 3, pp. 829-836 (2001). [18] R. Schwaiger1, O. Kraft “Size effects in the fatigue behavior of thin Ag films” J. Acta Materialia, vol 51, pp. 195-206 (2003). [19] R. P. Vinci and J. J. Vlassak “Mechanical behavior of thin films” Annu. Rev. [20] W. D. Nix, Metallurg. Trans. 20A 2217 (1-989). [21] 鄭雅琪,童麒嘉,陳冠綸,曾偉庭,林明澤 “以光學方法量測微槳型懸臂樑上金屬薄膜材料靜態與動態行為” 第十四屆奈米工程暨微系統技術研討會(2010)。 [22] D. T. Read and J. W. Dally “Strength, ductility, and fatigue life of aluminum thin films” International J. Microcircuits and Electronic Packaging 16 (4), 313-18 (1993). [23] C. Malhaire, M. Ignat, K. Dogheche, S. Brida, C. Josserond and L. Debove “Realization of thin film specimens for micro tensile tests” The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 623-626 (2007). [24] J. Chu and D. Zhang “Mechanical characterization of thermal SiO2 micro-beams through tensile testing” J. Micromech. Microeng. 19 (2009). [25] M. A. Haque and Saif, M. T. A. “In Situ Tensile Testing of nano-scale Specimens in SEM and TEM” Experimental Mechanics, 42(1), pp. 123-128 (2001). [26] M. A. Haque and Saif, M. T. A., Sensor and Actuator A 97-98 pp. 239-245 (2002). [27] Ming-Tzer Lin, Chi-Jia Tong, and Chung-Hsun Chiang “Design and development of novel electroplating spring frame MEMS structure specimens for the micro-tensile testing of thin film materials” Symposium on Design, Test, Integration and Packaging of MEMS / MOEMS, Italy (2006). [28] A. Shugurov, A. Panin, H. G. Chun, K. Oskomov “Size effects on the mechanical properties of TiN metallic films studied by nanoindentation” Material, IEEE (2004). [29] Suresh S., Nieh T.-G., Choi B. W. “Nanoindentation of Copper Thin Films on Silicon Substrates” Scripta Mater. vol. 41, no.9, pp. 951-957 ( 1999).
摘要: 材料受到週期性的應力或應變,將導致本身產生漸進式的破壞,材料在疲勞行為發生時外觀並無任何明顯的改變,無明顯的塑性變形區,對設備元件的安全以及壽命的影響更是無法明顯觀察與預防,因此藉由疲勞試驗來預測元件之壽命,可進一步對元件進行更換與預防疲勞破壞的情形發生。 本實驗針對了三種不同厚度之銅薄膜進行機械性質與疲勞週期量測,且於疲勞試驗中繪製出三種不同薄膜厚度之週期曲線,經由實驗結果可以了解到銅薄膜疲勞週期與薄膜所受振幅之關係,當振幅較高時,週期數相對的也較短。在低振幅條件下,都可達到10的五次方以上的疲勞週期,但在不同厚度下之疲勞行為並無顯著性的差異。
Materials occurred progressive damage by periodic stress or strain. Fatigue behavior of materials in the event there is no obvious change in appearance with no visible plastic deformation zone. The safety of the device components and the impact of life is not obvious observation and prevention, so the fatigue test to predict the component life can be replaced with further components to prevent fatigue damage from happening. In this study, we found copper thin films in high amplitude has lower fatigue cycles. In the low amplitude conditions,the different thickness of the fatigue behavior of the difference is not significant.
URI: http://hdl.handle.net/11455/4053
其他識別: U0005-2108201117501400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201117501400
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.