Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4056
標題: 晶面控制側向磊晶成長法對氮化鎵磊晶膜影響之研究
Investigation of GaN thin film by facet-controlled epitaxial lateral overgrowth method
作者: 楊德芳
Yang, Te-Fang
關鍵字: GaN
氮化鎵
MOCVD
ELO
FACELO
有機金屬化學氣相沉積
側向成長
晶面控制側向磊晶成長
出版社: 精密工程學系所
引用: [1] 史光國,“現代半導體發光及雷射二極體材料技術”,全華科技,2001。 [2] 林沛彥,“氮化鎵V型缺陷成長機制與新氮化鎵磊晶層轉移技術”,國立交通大學材料科學與工程所,2001。 [3] E. F. Schubert, “Light-emitting Diodes”, Cambridge, 2001. [4] 羅吉宗,“薄膜科技與應用”,全華科技,2004。 [5] P. Gibart, “Metal organic vapour phase epitaxy of GaN and lateral overgrowth”, Rep. Prog. Phys., 67, p. 667, 2004. [6] 黃澄偉,“Influence of AlxGa1-xN(0.5≤x≤1.0)/GaN Intermediate Strained Multi-layers on the Properties of GaN Films”, 私立逢甲大學材料科學所,2003。 [7] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth ( FACELO)”, J. Crystal Growth, 221, p. 316, 2000. [8] A. Sakai, H. Sunakawa, A. Kimura, A. Usui, “Dislocation propagation in GaN films formed by epitaxial lateral overgrowth”, J. Electron Microscopy, 49(2), p. 323, 2000. [9] S. Nitta, T. Kashima, M. Kariya, Y. Yukawa, S. Yamaguchi, H. Amano, “Mass Transport, Faceting and Behavior of Dislocations in GaN”, Materials Research Society symposium proceedings, 595, 2000. [10] H. Marchand, J. P. Ibbetson, P. T. Fini, X. H. Wu, S. Keller, S. P. Denbaars, “Fast lateral epitaxial overgrowth of gallium nitride by metalorganic chemical vapor deposition using a two-step process”, MRS Internet J. Nitride Semicond., 4S1, 1999. [11] H. Miyake, S. Bohyama, M. Fukui, K. Hiramatsu, Y. Iyechika, T. Maeda, “Carrier-gas dependence of GaN grown by hydride VPE”, J. Crystal Growth, 239, p. 1055, 2000. [12] H. S. Cheong, M. K. Yoo, H. G. Kim, H. G. Kim, S. J. Bae, C. S. Kim, C. H. Hong, “Direct heteroepitiaxial lateral overgrowth of GaN on strip-patterned sapphire substrates with very thin SiO2 mask”, Phys. Stat., 241, p. 2763 , 2004. [13] H. Marchand, J. P. Ibbetson, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, “Mechanisms of lateral epitaxial overgrowth of gallium nitride by metalorganic chemical vapor deposition”, J. Crystal Growth, 195, p. 328, 1998. [14] R. D. Dupuis, J. Park, P. A. Grudowski, C. J. Eiting, “Selective-area and lateral epitaxial overgrowth of III-N materials by metalorganic chemical vapor deposition”, J. Crystal Growth, 195, p. 340, 1998. [15] K. Horibuchi, N. Kuwano, H. Miyake, “Microstructures of two-step facet-controlled ELO-GaN grown by MOVPE method – effect of mask geometry”, J. Crystal Growth, 239, p. 1070, 2002. [16] M. E. Coltrin, C. C. Mitchell, “Mass transport and kinetic limitations in MOCVD selective-area growth”, J. Crystal Growth, 254, p. 35, 2003. [17] C. H. Ko, Y. K. Su, S. J. Chang, T. Y. Tsai, T. M. Kuan, W. H. Lan, J. C. Lin, “Two-step epitaxial lateral overgrowth of GaN”, Materials Chemistry and Physics, 82, p. 55, 2003. [18] P. Fini, L. Zhao, B. Moran, M. Hansen, “High-quality coalescence of laterally overgrown GaN stripes on GaN/Sapphire seed layers”, Appl. Phys. Lett., 75, p. 1706, 1999. [19] S. Gradecak, P. Stadelmann, “Bending of dislocations in GaN during epitaxial lateral overgrowth”, Appl. Phys. Lett., 85, p. 4648, 2004. [20] P. Fini, H. Marchand, J. P. DenBarrs, U. K. Mishra, J. S. Speak, “Determination of tilt in the lateral epitaxial overgrowth of GaN using X-ray diffraction”, J. Crystal Growth, 209, p. 581, 2000. [21] G. Feng, X. H. Zheng, Y. Fu, J. J. Zhu, X. M. Shen, B. S. Zhang, D. G. Zhao, Y. T. Wang, H. Yang, J. W. Liang, “Investigation on the origin of crystallographic tilt in lateral epitaxial overgrown GaN using selective etching”, J. Crystal Growth, 240, p. 368, 2002. [22] http://www.ee.ucla.edu [23] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaN/index.html [24] J. Z. Domagala, Z. R. Zytkiewicz, B. Beaumont, J. Kozlowski, R. Czernetzki, P. Prystawko, M. lesczynski, “X-ray diffraction studies of epitaxial laterally overgrown GaN layers on sapphire substrates”, J. Crystal Growth, 245 p. 37, 2002. [25] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, M. Ikeda, “Characterization of threading dislocations in GaN eptiaxial layers”, Appl. Phys. Lett., 76, p. 3421, 2000.
摘要: 氮化鎵磊晶膜已廣泛的應用在光電元件上,例如藍、紫或綠光的發光二極體或雷射二極體上。在商業上,大多以有機金屬化學氣相沉積法(MOCVD)在藍寶石基板上成長氮化鎵膜。由於藍寶石基板與氮化鎵存有14﹪的晶格不匹配以及熱膨脹係數的差異,使得薄膜含有高差排密度,造成元件發光效能的下降 。 為了降低差排密度,本論文主要利用晶面控制磊晶成長技術配合直接異質磊晶成長技術成長低差排密度的氮化鎵薄膜。先以電漿輔助化學氣相沉積法在藍寶石基板上沉積二氧化矽並蝕刻形成條狀圖案,再以有機金屬化學氣相沉積法分階段成長低溫緩衝層、高壓低溫無摻雜三角體氮化鎵膜及低壓高溫長成平面的氮化鎵薄膜。此方法的優點不須中斷磊晶製程,對於商業量產提供較佳的低差排密度氮化鎵磊晶製程。 最後本論文利用孔蝕密度分析法來驗證差排密度,並且獲得以<1100>GaN為圖案方向的氮化鎵磊晶膜其最小差排密度發生在側向成長區為1.8×106 cm-2且以<1120>GaN為圖案方向的氮化鎵磊晶膜其最小差排密度發生在開口區為6.2×106 cm-2,較傳統磊晶製程(差排密度約108 ~ 109 cm-2)有效且明顯的降低差排密度達100倍。
The material gallium nitride (GaN) is currently applied on photoelectronic devices, especially for blue or green light emitting diode and blue laser diode. In the commercial field, the most commonly used technology for growing GaN epilayer on the sapphire substrate is metal organic chemical vapor deposition (MOCVD). However, this method leads to a very high concentration of threading dislocations in the epilayer due to 14% lattice mismatch between the lattice constants of sapphire and GaN. In this thesis , the main study focuses on how to reducing the threading dislocations by applying facet-controlled epitaxial lateral overgrowth (FACELO) and direct heteroepitaxial (DH) method to grow GaN epilayer. First, the silicon oxide layer was deposited on sapphire by plasma enhanced chemical vapor deposition and etched to form the stripe pattern. Then, the GaN film was grown by MOCVD as following these steps: nucleation and buffer layer by low temperature, three-dimensional growth by high pressure and low temperature and lateral growth by low pressure and high temperature. This technique is suitable for mass production to get high quality GaN thin film because the epitaxial process will not be broken down. In this study, the effect of temperature, pressure, growth time, V/III ratio and pattern orientation on getting a flat thin film were investigated while assuring the low dislocation density be at around 107 cm-2. Finally, the quality of the GaN film was evaluated X-ray rocking curve method and PL spectrum measurement.
URI: http://hdl.handle.net/11455/4056
其他識別: U0005-0602200711573300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0602200711573300
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.