Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4067
標題: 藍光發光二極體之磊晶結構對元件特性影響之研究
Study on the Optoelectrical Characteristics for the Epitaxial Structure of Blue LEDs
作者: 賴啟鴻
Lai, Chi-Hong
關鍵字: Light-Emitting Diode
氮化銦鎵
Indium Gallium Nitride (InGaN)
Multi-Quantum Wells (MQWs)
多重量子井
發光二極體
出版社: 精密工程學系所
引用: [1] E. Fred Schubert, “Light-Emitting Diode”, Cambridge University, June 9, 2003. [2] 賴志遠, “Ⅲ-氮族半導體的極化電場效應”, 中央大學, 博士論文, 2003. [3] S. Yoshida, S. Misawa, and S.Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates”, Appl. Phys. Lett. 42, 427, 1983. [4] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyota, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. 48, 353, 1986. [5] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. kiyoku, “Normal Stress Effect in Polymer Solutions”, Appl. Phys. Lett. 69, 4056, 1996. [6] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous Emission of Localized Excitions in InGaN Single and Multiquantum Well Structure”, Appl. Phys. Lett. 69, 4188, 1996. [7] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm”, Appl. Phys. Lett. 70, 981, 1997. [8] 陳建華 編著, “發光二極體之原理與製程”, 全華, 2006. [9] S. Nakamura and S. F. Chichibu, “Inroduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes”, Taylor & Francis, 2000. [10] S. Nakamura, and Gerhard Fasol, “The Blue Laser Diode”, Springer, March 21, 1997. [11] 郭文泉, “氮化銦鎵/氮化鎵多層量子井之光學特性研究”, 中央大學, 碩士論文, 2000. [12] I. Ho and G. B. Sringfellow, “Solid Phase Immiscibility in GaInN”, Appl. Phys. Lett. 69, 2701, 1996. [13] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “Ⅲ–nitrides: Growth, characterization, and properties”, J. Appl. Phys. 87, 965, 2000. [14] J. L. Sanchez-Rojas, J. A. Garrido, and E. Muooz, “Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices”, Phys. Rev. B 61, 2773, 2000. [15] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides”, Phys. Rev. B 56, 10024, 1997. [16] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sukai, H. Ameno, and I. Akasaki, “Determination of Piezoelectric Fields in Strained GaInN Quantum Wells Using the Quantum-Confined Stark effect”, Appl. Phys. Lett. 73, 1691, 1998. [17] K. Domen, R. Soejima, A. Kuramata, and T. Tanahashi, “Electron Overflow to the AlGaN p-Cladding Layer in InGaN/GaN/AlGaN MQW Laser”, MRS Internet J. Nitride Semicond. Res. 3, 2, 1998. [18] Michael Quirk 著, 劉文超, 許渭州 校閱,羅文雄, 蔡榮輝, 鄭岫盈 譯, “半導體製造技術”, 滄海書局, pp. 305-347, 2003. [19] S. P. DenBarr, B. Y. Maa, P. D. Depkus, and H. C. Lee, “In situ characterization of MOCVD growth processes by light scattering techniques ”, J. Cryst. Growth. 77, 188, 1986. [20] 許樹恩, 吳泰伯, “X光繞射原理與材料結構分析”, 國科會精儀中心發行, 科儀叢書6, 1996. [21] P. F. Fewster, “X-ray diffraction from multiple quantum well structures”, Philips J. Res. 41, pp268-289, 1986. [22] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN Multiquantum-Well Blue and Green Light-Emitting Diodes”, IEEE J. sel. top. quantum electron., vol. 8, no. 2, 278, 2002.
摘要: 本論文主要是探討藍光發光二極體(Light Emitting Diode, LED)之磊晶結構中不同量子井層數對發光二極體元件光電特性之影響,利用有機金屬化學氣相沉積方式,磊晶成長發光二極體結構(P型氮化鎵/多重量子井/N型氮化鎵/緩衝層/藍寶石基板),其中量子井結構為3、5、8及10層量子井,再以X光繞射儀分析磊晶結構,以光激發光譜儀來量測光特性,且將晶片做成15 mil × 15 mil尺寸之LED元件,並量測各種光電特性,以進一步針對量子井對LED元件光電特性進行探討。 X光繞射儀量出在磊晶結構只有量子井層數不同下,分別為3、5、8、10層,經繞射光譜模擬分析,得到量子井厚度約30 Å,銦含量約11.8 %,位能障厚度約118 Å。以光激發光譜儀分析其發光波長均約為457 nm,所以量子井結構其能隙固定則發光波長也幾乎固定,發光強度及半高寬會隨著量子井增加而增加。以電激發光譜儀量測LED元件之光電特性,順向操作電壓及串聯電阻隨量子井層數增加而增加,由於量子井磊晶層為非摻雜,故量子井層數愈多時,其串聯電阻也愈大。當注入電流為20 mA時,發光波長均約為460 nm。而發光亮度在3至8層時亮度漸增加,這是載子被侷限於量子井內造成發光效率增加,且量子井層數愈多也使發光亮度提升。另外由發光波長藍移現象也可觀察出量子井之能帶受自由載子屏蔽效應及能帶填滿效應之影響。綜合以上各種光電特性,在相同之量子井厚度、銦含量及位障層厚度而具不同之量子井層數下,可發現具8層量子井層數磊晶膜之元件有較佳之發光亮度,也有良好之電特性。
In this thesis, the effects of multi-quantum-well (MQW) structure on the optoelectronic characteristics of blue light-emitting diodes (LEDs) was studied. A metal-organic-chemical-vapor-deposition system was used to deposit the LED epitaxial structure, i.e. p-GaN/MQW/n-GaN/buffer layer/sapphire. In this study, the number of quantum wells in the epitaxial structure were designed to be 3, 5, 8, and 10. The double crystal x-ray diffraction method was used to analyze the epitaxial structure and photoluminescence to measure the optical properties of the multi-quantum wells. After making these wafers into LED chips (chip size: 15 mil 15 mil), the effects of multi-quantum wells on the optoelectronic properties of GaN LEDs were analyzed. From x-ray measurements, the thickness of the quantum well was estimated to be ~30 Å, the indium component ~11.8 %, and the thickness of the barrier ~118 Å. The emission wavelength of this quantum well is about 457 nm as measured by photoluminescence. Based on these result, a stable energy bandgap with a corresponding wavelength in the quantum well structure can be obtained. It was found that both the luminance intensity and the full width at half maximum increased with the number of quantum wells. Because the quantum well is undoped, the forward voltage and the series resistance are found to increase with the quantum-well numbers. Under an injection current of 20 mA, the electroluminescence peaks were centered at 460 nm for the LED samples with different quantum-well numbers. Moreover, the luminance intensity of the LED sample was found to increase when the quantum-well number increased from 3 to 8. Since more electrons can be confined in the quantum wells, it will increase the efficiency of the electron-hole recombination. On the other hand, we can see that the wavelength appears blue shift. It could due to the free carrier screening or band filling effects. Finally, we can conclude that the 8 quantum wells in the GaN-LED epitaxial structure possess the better luminance intensity and electrical characteristics.
URI: http://hdl.handle.net/11455/4067
其他識別: U0005-0702200713030100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0702200713030100
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.