Please use this identifier to cite or link to this item:
標題: 發光二極體用鋁/鉻/氧化銦錫薄膜電極之研製與其物理特性之探討
A Study of Al/Cr/ITO Electrodes and Their Physical Properties for Light-Emitting Diodes
作者: 劉雅玲
Liu, Ya-Ling
關鍵字: Indium-tin oxide (ITO)
Light-emitting diode
Bonding pad

出版社: 精密工程學系所
引用: [1]史光國,現代半導體發光及雷射二極體材料技術,全華科技圖書有限公司,2002。 [2]F. M. Reicha and P. B. Barna, “On the Mechanism of Hillocks Formation in Vapour Deposited Thin Films”, Acta Phys. Acad. Sci. Hung, 49, p. 237 (1980) [3] F. d’Heurle, L. Berenbaum and R. Rosenberg, ”On the Structure of Aluminum Films”, Trans. Metall. Soc. AIME, 242, p. 502 (1968) [4] C. Y. Chang and R. W. Vook, “Topography and Microstructure of Al Films Formed under Various Deposition Conditions”, J. Vac. Sci. Technol., A9, p. 559 (1991) [5] T. J. Faith, “Hillock-free Integrated-circuit Metallizations by Al/Al-O Layering”, J. Appl. Phys., 52, p. 4630 (1981) [6] C. Y. Chang and R. W. Vook, ”Formation and Growth of Electromigration Induced Islands in Aluminum and in Aluminum Alloy Films”, Thin Solid Films, 228, p. 205 (1993) [7] L. Mattsson, Y.-H. Le page and F. Ericson, “Real-time Study of Migration in Aluminum Films by Means of Sub Angstrom-sensitive Scattering and Profiling Methods”, Thin Solid Films, 198, p. 149 (1991) [8] F. Ericson, N. Kristensen, J. A. Schweitz and U. Smith, ”A transmission Electron Microscopy Study of Hillocks in Thin Aluminum Films”, J. Vac. Sci. Technol., B9, 1, p. 58 (1991) [9] D. Gerth, D. Datzer and R. Schwarzer, “Correlation between Grain Growth and Hillock Growth in Thin Thermally Annealed Al-1% Si Films on Silicon Substrates”, Mater. Sci. Forum 94–96, p. 557 (1992) [10] C. J. Santoro, “Thermal Cycling and Surface Reconstruction in Aluminum Thin Films“, J. Electrochem. Soc., 116, p. 361 (1969) [11] E. Philofsky, “Design Limits When Using Gold-Aluminum Bonds”, Ninth Annual Proceedings Reliability Physics, 31, p. 120 (1971) [12] F. Y. Genin and W. J. Siekhaus, ”Experimental Study to Validate A Model of Hillocks Formation in Aluminum Thin Films”, J. Appl. Phys., 79, p. 3560 (1996) [13] B. Bacconnier, G. Lormand, M. Papapietro, M. Achard and A. M. Papon, “A Study of Heating Rate and Texture Influences on Annealing Hillocks by A Statistical Characterization of Al Thin-Film Topography”, J. Appl. Phys., 64, pp. 6483-6489 (1988) [14] S. K. Lahiri and O. C. Wells, ” Reversible Hillock Growth in Thin Films”, Appl. Phys. Lett., 15, p. 234 (1969) [15] C. J. Dell’oca and A. J. Learn, “Anodization of Aluminum to Inhibit Hillock Growth During High Temperature Processing”, Thin Solid Films, 8, pp. R47-R50 (1971) [16] J. E. Sanchez and E. Arzt, “Effects of Grain-orientation on Hillock Formation and Grain-growth in Aluminum Films on Silicon Substrates”, Scr. Metall. Mater., 27, p. 285 (1992) [17] R. A. Schwarzer and D. Gerth, “The Effect of Grain-Specific Texture on Hillock Growth in Al -1% Si Films on SiO2/Si Substrates”, J. Electron. Mater., 22, p. 607 (1993) [18] H.-C. W. Huang, P. Chaudhari and C. J. Kircher, “Ti Hillock Growth-kinetics in Thin Pb-In-Au Films”, Philos. Mag., A54, p. 583 (1986) [19] S. K. Lahiri, “Absence of Hillock Formation in Epitaxial Lead Films”, J. Appl. Phys., 46, p. 2791 (1975) [20] S.-Y. Jang, J. Wolf and O. Ehrmann, “CrCu based UBM (under bump metallization) Study with Electroplated Pb/63Sn Solder Bumps-interfacial Reaction and Bump Shear Strength”, IEEE CPMT., 26, p. 1 (2003) [21] T. Onishi, E. Iwamura and K. Takagi, “Morphology of Sputter Deposited Al Alloy Films”, Thin Solid Film, 340, pp. 306-316 (1999) [22] T. Onishi, E. Iwamura, K. Takagi and K. Yoshikawa, “Influence of Adding Transition Metal Elements to An Aluminum Target on Electrical Resistivity and Hillock Resistance in Sputter-deposited Aluminum Alloy Thin Films”, J. Vac. Sci. Technol., A14, pp. 2728-2735 (1996) [23] E. Iwamura, T. Ohnishi and K. Yoshikawa, ”A Study of Hillock Formation on Al-Ta Alloy Films for Interconnections of TFT-LCDs”, Thin Solid Films, 270, p. 450 (1995) [24] T. Onishi, E. Iwamura, K. Takagi and T. Watanabe, ” Effects of Nd Content in Al Thin Films on Hillock Formation”, J. Vac. Sci. Technol., A15, pp. 2339-2348 (1997) [25] Y. K. Lee, N. Fujimura, T. Ito and N. Nishida, “Annealing Behavior of Al–Y Alloy Film for Interconnection Conductor in Microelectronic Devices”, J. Vac. Sci. Technol., B9, pp. 2542-2547 (1991) [26] Y. Zhao, S. Xiong, C. Gu and Z. P. Wang, “Reliability Improvements for An a-Si TFT Matrix by Using Al-Ti Alloy”, SID International Symposium Digest of Technical Papers, p. 345 (1996) [27] T. Kawamura, K. Fujii and K. Honda, “An a-Si TFT Array for 15-inch Full-color High Resolution LCD”, J. Inst. Television Eng. Jpn., 147, p. 630 (1993) [28] H. Onoda, E. Takahashi and Y. Kawai, Shoji Madokoro, Hideaki Fukuyo and Susumu Sawada, “Mechanical Effects of Hafnium and Boron Addition to Aluminum Alloy Films for Submicrometer LSI Interconnects”, Jpn. J. Appl. Phys., 32, 11, pp. 4934-4940 (1993) [29] D. S. Gardner, T. L. Michalka and K. C. Saraswat, “Interconnection and Electromigration Scaling Theory”, IEEL Electron Devices Society, 34, p. 633 (1987) [30] D. S. Gardner, T. L. Michalka, K. C. Saraswat, T. W. Barbee, J. P. McVittie and J. D. Meindl, ”Layered and Homogeneous Films of Aluminum and Aluminum/Silicon with Titanium and Tungsten for Multilevel Interconnects”, IEEE J. Solid-State Circuits , 20, pp. 94-103 (1985) [31] S. K. Saha, R. S. Howell, and M. K. Hatalis, “Elimination of Hillock Formation in Al Interconnects Using Ni or Co”, Appl. Phys., 86, pp. 625-633 (1999) [32] C. H. F. Peden, K. B. Kidd and N. D.Shinn, “Metal/metal-oxide Interfaces: A surface Science Approach to the Study of Adhesion”, J. Vac. Sci. and Tech., A9, p. 1518 (1991) [33] Y. H. Kim, Y. S. Chaug and J. Kim, “Adhesion of Titanium Thin Film to Oxide Substrates”, J. Vac. Sci. and Tech., A5, 5, p. 2890 (1987) [34] H. Nagata and T. Shinriki, “Improvement of Bonding Strength between Au/Ti and SiO2 Films by Silayer Insertion”, J. Vac. Sci. and Tech., A17, p. 1018 (1999) [35] J. M. Rigsbee, P. A. Scott, and C. P. Ju, “Ion-plated Metal/Cermic Interfaces ”, Vacuum, 36, p. 71 (1986) [36] R.C. Budhani, S. Prakash and H. J. Doerr, “Oxygen Enhanced Adhesion of Platinum Films Deposited on Thermally Grown Alumina Surfaces”, J. Vac. Sci. and Tech., A4, p. 3023 (1986) [37] R. A. Erck, A. Erdemir and G. R. Fenske, “Effect of Film Adhesion on Tribological Properties of Silver-coated Alumnia”, Surface and Coatings Technology, 43, 44, p. 577 (1990) [38] S. V. Pepper, “Effect of Interfacial Species on Shear Strength of Metal-sapphire Contacts ”, J. Appl. Phys., 50, p. 8062 (1979) [39]曲喜新、過璧君,薄膜物理,電子工業出版社,1994。 [40] M. Harsdorff, “The Influence of Charge Point Defects and Contamination of Substrate Surfaces on Nucleation”, Thin Solid Films, 116, pp. 55-74 (1984) [41] A. Kamijo and T. Mitsuzuka, “A Highly Oriented Al [111] Texture Developed on Ultrathin Metal Underlayers”, Appl. Phy., 77, pp. 3799-3804 (1995) [42]陳力俊,微電子材料與製程,中國材料科學學會,2000。 [43] J. H. L. Pang, Luhuaxu, X.Q. SHI, W. Zhou and S. L. Ngoh, ”Intermetallic Growth Studies on Sn-Ag-Cu Lead-free Solder Joints”, J. Electron. Mater., 33, 10, p. 1219 (2004) [44] P. T. Vianco, J. A. Rejent and P. F. Hlava, ”Solid-state Intermetallic Compound Layer Growth between Copper and 95.5Sn-3.9Ag-0.6Cu Solder”, J. Electron. Mater., 33, 9, p. 991 (2004) [45]白木靖寬、及田貞史,薄膜工程學,全華科技圖書有限公司,2004。 [46]汪建民,材料分析,中國材料科學學會,1998。 [47] J.-H. J. Hsieh, T.-M Wu, J.-Z Tong and Y.-S. Yang, “Enhanced Adhesion and Thermal Stability of Al/Cr Film on Indium-Tin-Oxide Coated Glasses”, J. Adh. Sci. Tech., 17, pp. 2085-2095 (2003) [48] B. T. Massalski and H. Okamoto, Binary Alloy Phase Diagrams, American Society for Metals (1986) [49] M. Audier, M. Durand-Charre and E. Laclau, “Phase Equilibria in the Al-Cr system”, J. Alloys Compounds, 220, pp. 225-230 (1995) [50] J. R. David, Aluminum and Aluminum alloys, ASM International (1993). [51]賴彥儒,「2006年LED產業展望」,光電科技,第76期,2006。 [52]賴彥儒,「台灣LED產業產值全球第二的背後」,光電科技,第76期,2006。 [53]
摘要: 近來高度發光二極體多以氧化銦錫 (ITO) 透明導電膜作為電流分佈層,ITO導電膜因具透明的特性,其在紅、黃光波段,光穿透率可超過90﹪,且導電特性良好,可避免電流侷限於金屬電極下方,因此非常適合用來提升發光二極體的發光效率。 鋁金屬具有低電阻,可減少延遲時間,價格便宜的優點,是元件金屬打線電極中常採用的金屬,然而由於鋁表面非常容易生成小突起(hillock),且和ITO薄膜間的附著性並不理想,嚴重地影響元件的機械特性與可靠度。一般為提高兩者間的附著性,會於兩者間沈積易氧化金屬,如鈦、鉬、鉭、鉻等作為過渡中間層,藉由過渡金屬形成化合物中間層來增加附著性。 因此本研究主要探討當於ITO薄膜與鋁薄膜間,沈積不同厚度的鉻薄膜,對後續沈積的鋁/鉻/ITO薄膜,其物理特性的影響及附著性上的差異。另一方面,則探討經過熱處理製程後,對鋁/鉻/ITO薄膜所造成的影響。由本論文實驗結果發現,當直接沉積鋁於ITO薄膜時,以X光繞射分析,發現鋁薄膜存在多種晶相結構,而沉積10 nm的鉻於鋁及ITO薄膜間後,鋁薄膜存在較高的[111]結構,其表面產生許多的小突起;隨著鉻厚度的增加,鋁薄膜表面小突起的數量則漸漸減少。附著性方面,當於鋁和ITO錫薄膜間,沈積10 nm的鉻薄膜,即可明顯提升薄膜附著性,薄膜附著性由小於0.25 N/mm2提升至47.78 N/mm2。當分別沉積40、70、100 nm的鉻於鋁和氧化銦錫薄膜間後,其附著性則變為50.96、27.27、24.18 N/mm2。快速升降溫熱處理,可以使薄膜晶粒再成長,也提供各層薄膜原子互相擴散提升附著性,然而同時也會因熱應力過大,導致薄膜附著性下降。
Currently, indium-tin oxide(ITO)thin films have been widely used as the transparent current spreading layers for light-emitting diodes (LEDs) to improve the luminescence efficiency. The transmittance of the ITO film can achieve more than 90% in the yellow and red wavelength region and shows highly conducting to avoid the current confined under the electrode. Aluminum (Al) pad is commonly used as the metal electrode in electric devices, mainly because of its low electric resistance, small RC delay time and low cost. However, the hillock formation on the Al surface and poor adhesion between Al and ITO strongly degrade the reliability performance. An interlayer between the Al and ITO films was proposed to solve these problems. Generally, transition metals (Ti, Mo, Ta, Cr) were deposited as the intermediate layer to improve the adhesion due to its easy oxidization with ITO. In this thesis, the effects of Cr interlayer thickness between Al/ITO thin films were investigated. Various thermal treatment processes were performed on the Al/Cr/ITO thin-film structure. It was found that he Al film formed varies crystalline orientations on the ITO surface in the absence of Cr interlayer. By inserting a 10-nm-thick Cr interlayer, the Al showed highly [111] diffraction peak and lots of hillocks. This improves the pull force of Al/Cr/ITO thin film from 0.25 N/mm2 to 47.78 N/mm2. Further increasing the Cr thickness results in larger grain size and fewer hillocks in the Al pads. The 40-, 70- and 100-nm-thick Cr intermediate layers correspond to the pull force of 50.96、27.27 and 24.18 N/mm2, respectively. Additional thermal treatment could be made grains growth and atomic diffusion to improve the film quality. Nevertheless, it could yield inferior adhesion properties between Al and ITO due to the higher thermal stress in our experimental range.
其他識別: U0005-0807200611010200
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.