Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4075
標題: 以高密度電漿製作藍寶石晶圓微形圖案之特性研究
Fabrication and Characterization of Patterned Sapphire Substrates Using a High-Density-Plasma Etcher
作者: 蔡育錚
Yu-Zhen, Tsai
關鍵字: Patterned sapphire substrate
圖案化藍寶石基板
GaN
Light-emitting diode
Dry etching
氮化鎵
發光二極體
乾式蝕刻
出版社: 精密工程學系所
引用: [1] S. Yoshida, S. Misawa, S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,”Appl. Phys. Lett. Vol. 42, 427 (1983). [2] H. Amino, N. Sawaki, I. Akasaki, Y. Toyota, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,”Appl. Phys. Lett. Vol. 48, 353 (1986). [3] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation, “Jpn. J. Appl. Phys. Part 2 Vol. 28, L2112 (1989). [4] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai, “ Superbright green InGaN single-quantum-well-structure light-emitting diodes, “Jpn. J. Appl. Phys. Part 2 Vol. 34, L1332 (1995). [5] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsashita, Y. Sugimoto, H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes ,“Appl. Phys. Lett. Vol. 69, 4056 (1996). [6] Y. Kato, S. Kitamura, K. Hiramatsu, N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,”J. Cryst. Growth, Vol. 144, 133 (1994). [7] S. Nakamura, M. Senoh, S.Nagahata, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H.Umemoto, M. Sano, K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices,”Jpn. J. Appl. Phys. Vol. 36, L1568 (1997). [8] T. Gehrke, Kenvin, J. Linthicum, E. Preble, “Pendeo-epitaxial growth of gallium nitride on silicon substrates,“J. of Electron. Mater. , Vol. 29, 3 (2000). [9] K. Tadatomo, H. Okahawa, Y.Ohuchi, ”High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,”Jpn. J. Appl. Phys. Vol. 40, L583 (2001). [10] Y. P. Hsua, S. J. Changa, Y. K. Sua, J. K. Sheub, C. T. Leea, T. C. Wena, L. W. Wua, C. H. Kuoa, C. S. Changa, S. C. Shei, “Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs,”J. of Cryst. Growth Vol. 261, 466 (2004). [11] M. Yamada, T. Mitani, Y. Narukwa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, T. Mukai1, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,”Jpn. J. Appl. Phys. Vol. 41, 1431 (2002). [12] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,”Jpn. J. Appl. Phys. Vol. 41, 583 (2002). [13] C. H. Jeong, D. W. Kim, K. N. Kim, G. Y. Yeom, “A study of sapphire etching characteristics using BCl3-based inductively coupled plasmas,” Jpn. J. Appl. Phys. Vol. 41, 6206 (2002). [14] S. Nakamura, M. Senoh, S. Nagahata, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattuces,”Jpn. J. Appl. Phys. Vol. 36, 1568 (1997). [15] W. K. Wang, D. S. Wuu, W. C. Shih, J. S. Fang, C. E. Lee, W. Y. Lin, P. Han, R. H. Horng, T. C. Hsu, T. C. Huo, M. J. Jou, A. Lin, Y. H. Yu “Near-ultraviolet InGaN/GaN light-emitting diodes grown on patterned sapphire substrates,”Jpn. J. Appl. Phys. Vol. 44, L2512 (2005). [16] 李孟儒,國立東華大學碩士論文 (2002) [17] 許建興,私立逢甲大學碩士論文 (2003) [18] 羅正忠,張鼎張,“半導體製程技術導論”,台灣培生教育出版有限公司 (2002) [19] 施敏(原著),黃調元譯,“半導體元件物理與製作技術”,交大出版社 (2002) [20] J. A Mucha and D. W. Hess, “Plasma Etching, in L. F. Thomposon and C. G. Willson, Eds. , Microcircuit Processing: Lithography and Dry Etching, American Chemical Society, Washington, D. C. (1984). [21] 丁宏哲,“氯氣電漿放射光譜解析”,國立清華大學工程與系統科學所碩士論文 (2002) [22] 雷舜誠,“300 mm 電感耦合式電漿源蝕刻機台之製程研究”,國立清華大學工程與系統科學所碩士論文 (2001) [23] P. E. Riley, S. S. Peng, “Plasma etching of aluminum for ULSI circuits,” Solid-State Technol. Vol. 47, 1124 (1993). [24] Michael Quirk, Julian Serda, (羅文雄,蔡榮輝譯)“半導體製程技術”,台灣培生教育出版有限公司 (2005) [25] M. A. Lieberman, and A. J. Lichtenberg, “Principles of plasma discharges and materials processing,”John Wiley & Sons Inc (1994). [26] J. Etrillard, F. Heliot, P. Ossart, M. Juhel, G. Patriarche, “Sidewall and surface induced damage comparison between reactive ion etching and inductive plasma etching of InP using a CH4/H2/O2 gas mixture,”J. Vac. Sci. Technol . (a) Vol. 14, 1056 (1996). [27] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr. , C. Tran, M. Schruman, “Inductively couple plasma etching of GaN,”Appl. Phys. Lett. Vol. 8, 69 (1996). [28] S. A. Smith, C. A. Wolden, M. D. Bremser, A. D. Hanser, R. F. Davis, W. A. Lampert, “High rate and selective etching of GaN, AlGaN, AlN using an inductively coupled plasma,”Appl. Phys. Lett. Vol. 25, 71 (1996).
摘要: 目前氮化鎵磊晶大都以藍寶石基板為主,但是它和氮化鎵材料之間所存在的問題諸如晶格常數不匹配,不同的熱膨脹係數,以及化學性質的差異等,都直接影響了氮化鎵的磊晶品質,其中最大的問題是在於晶格常數不匹配所產生的貫穿式差排,它會在藍寶石基板與氮化鎵緩衝層的介面產生,並往上成長貫穿氮化銦鎵主動層,進而影響此主動層內的電子與電洞的復合率,降低發光效率以及元件的可靠度。 將藍寶石基板圖案化,即是利用圖案化藍寶石基板之表面的階梯輪廓,再將氮化鎵磊晶薄膜沉積於基板上,使得磊晶膜產生橫向成長以減少差排,利用此一技術來減少差排缺陷改善元件特性。本研究是利用曝光微影製程在藍寶石基板上塗佈一層已開圖的光阻後,再利用感應式耦合電漿蝕刻機來蝕刻藍寶石基板,其目的在於探討乾式蝕刻在改變腔體壓力、感應耦合電漿功率、下電極射頻功率以及氣體流量比例,探討其不同參數對於蝕刻角度、蝕刻速率,以致應用於發光效率的提升。 在於感應耦合電漿的蝕刻速率,我們發現蝕刻率隨著感應耦合電漿功率增加、下電極功率提高、增加BCl3的氣體比例、腔體的工作壓力降低而隨之增大。最大的蝕刻率可以達到55 nm/min,我們可控制的蝕刻率範圍為7~55 nm/min 之間。另外,在於蝕刻角度的部分,我們在不同的ICP參數中有不同的實驗數據,其蝕刻角度最大約為53°,可控制的角度範圍為6~53°之間。然後我們選擇適當的深度作蝕刻,其圖案為直徑間距3 μm,蝕刻深度為1 μm,將2吋藍寶石基板圖形化,並放入有機金屬氣相沉積機台磊晶以及製作成發光二極體,發現圖形化的藍寶石基板比一般藍寶石基板所作成元件輸出功率能提高10%以上。
Group III nitride semiconductors have recently attracted much attentions for their versatile applications as high-brightness light emitting diodes (LEDs) which can be used in full-color displays, full-color indicators and light sources for lamps. Conventional GaN-based LEDs are grown on top of sapphire substrates with a low temperature GaN nuclear layer. The GaN nuclear layer could significantly improve the crystal quality of the subsequent GaN epitaxial layer, threading dislocation density in the order of 109-1012 cm-2 will still remain in the sample due to the large difference in lattice constant between sapphire and GaN. Previously, it has been shown that one can effectively reduce the threading dislocation density down to 107 cm-2 or less by using the so-called “pattern sapphire substrate” (PSS) . In this thesis, sapphire wafers were etched using inductively coupled plasmas (ICP) and their etch characteristics were investigated as functions of gas combination of Cl2/BCl3, operation pressure, ICP power, and DC-bias voltage. The profiles of the etched sapphire wafers were evaluated by scanning electron microscopy. In our experimental range, the etch rate of sapphire from 7 to 55 nm/min, and the etching profile from 6 to 53 degree were obtained. Finally, a hole array (diameter: 3 μm, spacing: 3 μm) with an etching depth of 1 μm was used for the PSS fabrication. It was found that the nitride-based LEDs fabricated on PSS showed ~10% higher output power than that fabricated on the conventional sapphire substrate.
URI: http://hdl.handle.net/11455/4075
其他識別: U0005-0808200616355900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0808200616355900
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.