Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4076
標題: 超高亮度/超散熱高壓式發光二極體製程之研究
Study on the fabrication for high brightness/ super thermal dissipated HV LED applications
作者: 田慶糧
Tien, Ching-Liang
關鍵字: HV LEDs
高壓式發光二極體
AC LEDs
substrate transfer
laser lift-off
surface roughening.
交流式發光二極體
基板轉移
雷射剝離
晶片粗化.
出版社: 精密工程學系所
引用: [1] David Jaimes, "A Constant Power Rectifier for Telecommunication Using a Novel Variable Turns Ratio Transformer," IEEE, vol. 1, pp.251-256, 1997. [2] A. Aqik and I. Cadirci, "Active clamped ZVS forward converter with soft-switched synchronous rectifier for high efficiency ,low output voltage applications" IEE Proc.-EIectr. Poner Appl., Vol. ISO, Are. 2, Murclr 2003. [3] M. E. Jacobs, R. W. Farrington, G. H. Fasullo, Y. Jiang, R. J. Murphy, V. J. Thottuvelil, K. J. Tim, "An Improved High-Efficiency Rectifier For Telecom Applications" IEEE, vol. 1, pp.530-535, 1996. [4] Hsi-Hsuan YEN, Hao-Chung KUO, and Wen-Yung YEH1,“Characteristics of Single-Chip GaN-Based Alternating Current Light-Emitting Diode”, Jpn J. Appl. Phys. Vol. 47, pp. 8808–8810, 2008. [5] Hsi-Hsuan Yen, Wen-Yung Yeh, and Hao-Chung Kuo,“GaN Alternating Current Llight-Emitting Device”, Phys. Stat. Sol. (a) 204, pp. 2077–2081, 2007. [6] Jaehee Cho , Jaewook Jung, Jung Hye Chae, Hyungkun Kim, Hyunsoo Kim, Jeong Wook Lee, Sukho Yoon, Cheolsoo Sone, Taehoon Jang, Yongjo Park, and Euijoon Yoon,“Alternating- Current Light Emitting Diodes with a Diode Bridge Circuitry”, Jpn J. Appl. Phys. Vol. 46, pp. L1194–L1196, 2007. [7] Jin-Ping Ao, Hisao Sato, Takashi Mizobuchi, Kenji Morioka, Shunsuke Kawano, Yoshihiko Muramoto, Young-Bae Lee, Daisuke Sato, Yasuo Ohno, and Shiro Sakai,“Monolithic Blue LED Series Arraysfor High-Voltage AC Operation”, Phys. Stat. Sol. (a) 194, pp. 376–379, 2002. [8] Ray-Hua Horng, Member, IEEE, Shao-Hua Huang, Chuang-Yu Hsieh, Xinhe Zheng, and Dong-Sing Wuu,“Enhanced Luminance Efficiency of Wafer-Bonded InGaN–GaN LEDs With Double-Side Textured Surfaces and Omnidirectional Reflectors”, IEEE J. Quantum Electronics., vol.44, pp. 1116-1123, 2008. [9] 林明德,“高功率AC LED交流電壓驅動特性研究”,國立中央大學光電科學研究所所碩士論文, 2007. [10] G. B. Stringfellow, "High brightness light emitting diode”, Academic Press Inc. Boston, pp. 149-219, 1997. [11] H. Sugawara, and M. Ishikawa, and G. Hatakoshi,“High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett., vol. 58, pp. 1010-1012, 1991. [12] H. Sugawara, K. ltaya, H. Nozaki and G. Hatakoshi,“High-brightness lnGaAlP green light-emitting diodes,”App. Phys. Lett., vol. 61, pp. 1775-1777, 1993. [13] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE Invited paper.,vol. 85, pp. 1752-1764, 1997. [14] A. Zukauskas, M. S. Shur, and R. Gaska,“Introduction to Solid-State Lighting,” New York: Wiley, pp. 5-9, 2002. [15] S. Nakamura and S. F. Chichibu,“Introduction to Nitride Semiconductor Blue Laser Diode and Light EmittersDiodes,” London: Taylor and Francis, pp. 11-17, 2000. [16] S. Nakamura and G. Fasol,“The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Berlin: Springer, pp. 6-10, 2000. [17] 史光國, 半導體發光二極體及固態照明, 全華科技, pp.2-1, 2005. [18] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版, 高立圖書有限公司, pp. 104-115, 2000. [19] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版, 高立圖書有限公司, pp. 192-206, 2000. [20] D. K. Schroder, “Semiconductor Material and Device Characterization”, Wiley, 1990. [21] V. M. Burmedez, “Study of oxygen chemisorption on the GaN(0001)-(1×1) surface,”J. Appl. Phys., vol. 80, pp. 1190-1200, July. 1996. [22] P. C. K. Kwok, C. C. Chan and E. Herbert Li, “Designing an external efficieny of over 30% for light emitting diode,” IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting, vol. 1, pp.187-188, 1998. [23] E. Herbert Li, Chun-Chung Chan, and P. C. K. Kwok, “Optimization of textured-surface light emitting diode,” IEEE Hong Kong Electron Devices Meeting, Proceedings., pp.6-9, 1998. [24] http://zh.wikipedia.org/ 拉曼效應 [25] E. H. Li, C. C. Chan and P. C. K. Kwok, “Optimization of textured-surface light emitting diode,” IEEE Electron Devices Meeting Proceedings., pp.6-9, 1998. [26] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In, Ga)N light-emitting diode performance by laser liftoff and transfer from sapphire to silicon,” IEEE Photon. Technol. Lett., vol.14, pp.1400-1402, 2002. [27] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu and C. C. Lin, ”InGaN/GaN MQW blue LEDs with GaN/SiN double buffer layers,” Mater. Sci. & Eng. B., vol.111, pp.214-217, 2004. [28] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C.N.Huang,J. M. Hong, Y. C. Yu, C. W. Wang and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys., vol.83, pp.3172-3175, 1998. [29] S. R. Jeon, Y. Ho. Song, H. J. Jang and G. M. Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett., vol.78, pp.3265-3267, 2001. [30] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars and L. A. Coldren, “Indium tin oxide contacts to gallium ni-tride optoelectronic devices,” Appl. Phys. Lett., vol.74, pp.3930-3932, 1999. [31] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol.79, pp.2925-2927, 2001. [32] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke and J. K. Sheu, “High brightness InGaN green LEDs with an ITO on n++-SPS upper contact”, IEEE Trans. Electron Devices., vol.50, pp.2208-2212, 2003. [33] 林敬倍,“高功率藍光發光二極體之熱管理最佳化設計與製作”, 國立中興大學精密工程研究所碩士論文, 2009.
摘要: 本論文研究主要是在改善高壓式發光二極體與交流式發光二極體的出光效率。其中高壓式發光二極體是在研究一定區域面積下,當晶粒間距不同時,對發光的影響。而交流式發光二極體則是利用晶圓接合、雷射剝離、及雙面粗化技術,並利用基板轉移技術,轉移至具有高反射率之矽基板,以提升交流式發光二極體之出光。此種製程方式較傳統交流式發光二極體製程中5mA電流下可將發光功率提升至12.25mW。 在製作過程中,因一般家用電源電壓為110V,而一顆LED chip的啟動電壓約為3V,經由串接過程,以達到家用電壓可承受數量,故在設計上需串接至37顆發光二極體,因需要直接使用家用交流電使用,且未減少變壓器整流器的功率消耗,故在設計上使其呈現橋式電路形式。但因交流式發光二極體,具有雙向導通特性,其結構上仍屬於並聯結構,在位於逆向電壓之微晶粒,控制其承受電壓在約3V,以避免造成崩潰電壓。 高壓式發光二極體無須像交流式發光二極體那樣在單一面積下將微晶粒分割成40~50顆以達到110V,而高壓式光二極體只需分割成8顆微晶粒即可擁有24V。使用4顆相同24V的高壓式發光二極體即可達到100V電壓,因此變壓器只需做10V的電壓降。且在微晶粒間距改變至40um的情況下,仍然有約80%的出光面積。而光功率比間距10um的微晶粒還提升30%。
This study is focused on efficiency improvement of the light extraction for Hight-Voltage light-emitting diodes (HV LEDs) and Alternating-Current light-emitting diodes (AC LEDs). In the HV LEDs, the characteristics of LEDs were investigated by various micro-chips size and spacing with the same chip size. The AC LEDs was improved by a combination of a horizontal electrode structure, wafer bonding and laser lift-off, surface roughening techniques, and an omni-directional reflector. The light output power measured under a driving current of 5 mA was improved ao 12.25 mW. For compliance with the domestic voltage, 110V, 37 pieces of AC LEDs with an open circuit voltage of 3V was connected in series. Furthermore Waston bridge rectangular circuit was put into design to avoid an additional power consumption of the transformer. AC LEDs belong to parallel structure because of its bidirectionally conductive property. The AC LEDs operated with a reverse voltage of around 3V can effectively prevent the device from breakdown. HV LEDs were subsequently fabricated because it can be operated with 24 V with only 8 micro-chips instead of 40-50 ones that ACLEDs will need for to operate at the same voltage. Moreover, the integrated device composed of 4 HV LEDs can operate at 100V while the transformer is working with the voltage drop of merely 10V. Even with the chip distance of 40um, HV LEDs can still possess of 80% illumination surface with 30% higher output power as compared with that of HV LEDs with the chip distance of 10um.
URI: http://hdl.handle.net/11455/4076
其他識別: U0005-2408201111385700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408201111385700
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.