Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4081
標題: 以電子束蒸鍍氧化銦錫透明導電膜及其對磷化鋁銦鎵發光二極體特性影響
Effects of Electron-Beam Evaporated ITO Films on Performance of AlGaInP Light-Emitting Diodes
作者: 張閏
Chang, Jun
關鍵字: ITO
氧化銦錫薄膜
AlGaInP LED
Deposition rate
Oxygen pressure
磷化鋁銦鎵發光二極體
蒸鍍速率
氧流量
出版社: 精密工程學系所
引用: 參考文獻 [1] 蘇炎坤,林俊良,「發光二極體之發展」,高雄應用科技大學學報, (2003)。 [2] D. V. Morgan, I. M. Al-Ofi, and Y. H. Aliyu, ”Indium Tin Oxide Spreading Layers for AlGaInP Visible LEDs”, Semicond. Sci. Technol., Vol. 15, p. 67 (2000)﹒ [3] 史光國,現代半導體發光及雷射二極體材料技術,全華科技,p. 56,台北,台灣,(2001)。 [4] 楊明輝,「金屬氧化物透明導電材料的基本原理」,工業材料,179,p. 134,(2001/11)。 [5] 黃天恒,趙文軒,「透明導電膜技術」,化工資訊,p. 34,(2002/12)。 [6] 溫志中,「ITO透明導電膜之濺鍍技術展望」,工業材料,166,p. 140,(2000/10)。 [7] E. Aperathitis, M. Bender, V. Cimalla, G. Ecke, and M. Modreanu, “Properties of Rf-Sputtered Indium-Tin-Oxynitride Thin Films”, J. Appl. Phy., Vol. 94, p. 1258 (2003)﹒ [8] 鄭耀爵,「以離子束濺鍍法制備氧化銦錫之光學、電學及可靠性質之研究」, 國立成功大學材料科學及工程學系碩士論文,p. 6,(2003)。 [9] 洪家健,「以超音波霧化法制備錫摻雜氧化銦薄膜之光電特性」,國立中山大學材料科學研究所碩士論文,p. 1,(2002)。 [10] 李玉華,「透明導電膜及其應用」,科儀新知,12,p. 94,(1990/7)。 [11] 陳靜怡,「氧化鋅中介層對ITO透明導電膜性質之影響」,國立成功學材料科學及工程學系碩士論文,p. 9,(2002)。 [12] 吳政杰,「以濺射共沉積法成長ITO-ZnO復合透明導電膜之性質研究」,國立成功大學材料科學及工程學系碩士論文,p. 6,(2004)。 [13] 黃上昀,「以反應性磁控濺鍍法制備ITO薄膜應用於ARAS膜之研究」, 國立臺北科技大學材料及資源工程系碩士論文,p. 3,(2002)。 [14] 施敏 原著,黃調元 譯著,半導體元件物理與製程技術,第二版,高立圖書有限公司,p. 91,台北,台灣,(2003)。 [15] 楊明輝,「透明導電膜材料與成膜技術的新發展」,工業材料,189,p. 161,(2001/9)。 [16] 侯智元,「高亮度光二極體晶圓接合製程之研究」,國立交通大學材料科學工程學系碩士論文,p. 18,(2002)。 [17] 邱顯浩,「透明導電金屬氧化物電子能帶結構計算」,工業材料,196,p. 114,(2003/4)。 [18] 李正中,薄膜光學與鍍膜技術,第四版 ,藝軒圖書出版社,台北,台灣,(2004)。 [19] 呂登復,實用真空技術,國興出版社,新竹,台灣,(2003)。 [20] W. R. Runyan, and T. J. Shaffner, Semiconductor Measurement & Instruments, The McGraw-Hill Companis, Inc.,(1998)﹒ [21] R. A. Young,and R. V. Kalin, Scanning Electron Microscopic Techniques for Characterization of Semiconductor Materials, American Chemical Soc., vol. 295, p. 49 (1986)﹒ [22] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, “Scanning Electron Microscope and X-ray Microanalysis”, Plenum., New York, (1984)﹒ [23] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons,Inc., p. 507 (1990)﹒ [24] ASTM F43: Annual Book of ASTM Standards Vol.10.05﹒ [25] L. B. Valdes, Resistivity Measurements on Germanium for Transistors, Proc. IRE 42., p. 420 (1954)﹒ [26] 威廉史密斯 原著,李春穎等人 譯著,材料科學與工程,第二版,高立出版社,台北,台灣,(1994)。 [27] J. P. Pelz, “Tip-Related Electronic Artifacts in Scanning Tunneling Spectroscopy”, Phys. Rev. B 43., p. 6746 (1991)﹒ [28] G. binning, C. F. Quate, and C. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett., Vol. 56, p. 930 (1956)﹒ [29] T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of Cantilever Styli for the Atomic Force Microscope”, J. Vac. Sci. Technol., Vol. 8, p. 3967 (1990)﹒ [30] A. Amaral, P. Brogueira, C. Nunes de Carvalho, and G. Lavareda, “Influence of the Initial Layers on the Optical and Electrical Properties of ITO Films”, Optical Materials., Vol. 17, p. 291 (2001)﹒ [31] H. Kim, J. S. Horwitz, G. Kushto, A. Piqre, Z. H. Kafafi, and C. M. Glimore, “Effect of Film Thickness on the Properties of Indium Tin Oxide Thin Films”, J. Appl. Phy., Vol. 88, p. 6021 (2000)﹒ [32] M. C. Wu, J. F. Lin, M. J. Jou, C. M. Chang, and B. J. Lee, “High Reliability of AlGaInP LED''s with Efficient Transparent Cotacts for Spatially Uniform Light Emission”, IEEE. Electron Device Lett., Vol. 16, p. 482 (1995)﹒ [33] 白木靖寬,吉田貞史 編著,王建義 編譯,薄膜工程學,全華科技,p. 12,台北,台灣,(2004)。 [34] 吳基榮,楊逸辰,葉秀聰,蘇睿傑,劉伍健,「錫-銦氧化導電膜光電特性的研究」,國立高雄海院學報,18,p. 49。 [35] R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of Annealing Temperature and Environment on the Properties of Indium Tin Oxide Thin Films”, J. Phys., D: Appl., Vol. 38, p. 2000 (2005)﹒ [36] H. Kim, J. Lee, and C. Park, “Surface Characterization of O2-Plasma-Treated Indium-Tin Oxide (ITO) Anode for Organic Light-Emitting-Device Applications”, J. Korean Phy. Soc., Vol. 41, p. 395 (2002)﹒ [37] Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium-tin oxide) Thin Film as the Bottom Electrode of an Organic Light Emitting Diode”, Thin Solid Films., Vol. 411, p. 12 (2002)﹒ [38] W. G. Haines and R. H. Bube, “Effect of Heat Treatment on the Optical and Electrical Properties of Indium-Tin Oxide Films”, J. Appl. Phy., Vol. 49, p. 304 (1998)﹒ [39] R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin Doped Indium Oxide Thin Films:Electrical properties”, J. Appl. Phy., Vol. 83, p. 2631 (1998)﹒ [40] H. Ma, J. S. Cho, and C. H. Park, “A Study Indium Tin Oxide Thin Film Deposited at Low Temperature Using Facing Target Sputtering System”, Surf. Coating Technol., Vol. 153, p. 131 (2002)﹒ [41] R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, S. Li, and S. Fung, “Properties of ITO Thin Films Deposited on Amorphous and Crystalline Substrates with E-Beam Evaporation”, Semicond. Sci. Technol., Vol. 19, p. 695 (2004)﹒ [42] W. F. Wu, and B. S. Chiou, ”Effect of Oxyen Concentration in the Sputtering Ambient on the Microstructure, Electrical and Optical Properties of Radio-Frequency Magneton-Sputtered Indium Tin Oxide Films”, Semicond. Sci. Technol., Vol. 11, p. 196 (1996)﹒ [43] 楊忠如,「以電子槍蒸鍍氧化鈦及摻雜氧化鋁或氧化矽後之薄膜表面與光觸媒等研究」,輔仁大學物理學系研究所碩士論文,p. 15,(2004)。
摘要: 中文摘要 發光二極體已經發展多年,一直有亮度的問題無法改善,因此運用上始終受到限制,氧化銦錫薄膜的運用是多種亮度提昇方法之一;氧化銦錫薄膜本身為非化學計量比特性,因此在製程過程與產品品質控制比較不容易,目前發光二極體廠以電子束蒸鍍方式,將氧化銦錫薄膜蒸鍍於磷化鋁銦鎵發光二極體上;實驗中發現不同光學薄膜厚度,因為干涉現象造成最低反射波長改變,必須根據磷化鋁銦鎵發光二極體的發光波段,設計適合膜厚獲得最佳亮度輸出。當沉積250 nm的氧化銦錫薄膜後,其反射率最低點約在 575 nm,因此可以有效改善磷化鋁銦鎵發光二極體出光波段在此附近的亮度,順向電壓也因氧化銦錫薄膜具有電流分佈的效果,大幅下降0.03~ 0.5 V;另外在快速升溫熱處理過程,造成氧化銦錫薄膜再結晶,因此反射波段在折射率及厚度改變下,出現波長紅移約5~10 nm左右;蒸鍍速率的改變,會影響氧化銦錫薄膜的晶粒尺寸,但是實際運用於磷化鋁銦鎵發光二極體時,在本論文的實驗中發現,其對順向電壓與亮度特性較無影響;氧流量實驗部分,不論是加入過多或過少的氧流量,皆會造成磷化鋁銦鎵發光二極體亮度出現偏暗情況,氧流量不足時蒸鍍原子偏向金屬化,出現灰黑的色澤造成穿透度下降至70%左右,實驗中在氧流量13 sccm時可獲得最大亮度為167.4 mcd,而氧流量的改變也影響氧化銦錫薄膜中電阻率,造成順向電壓飄移,當氧流量為5 sccm時,有最低的順向電壓為2.05 V。
Abstract Although III-V light-emitting diodes(LEDs)have been developed for several years, there still exist some problems to be solved, such as the luminescence efficiency and the watt-per-dollar issue. The use of indium-tin oxide(ITO)thin films as the transparent current-spreading layer (TCL) has become an important approach to improve the external quantum efficiency. Currently, the electron-beam evaporation method is widely used in the ITO process line for AlGaInP LEDs because of its mass production capability. However, it is very difficult to precise control the ITO stoichiometric and film quality using an electron-beam evaporator. In this thesis, transmittance and specific resistance of the ITO films were investigated as functions of the oxygen flow and evaporation rates during the deposition process. It was found that a minimum reflectance at 575 nm of ITO can be achieved with an ITO thickness of 250 nm. A suitable thickness of ITO thin film will improve the luminescence efficiency decrease the forward voltages of AlGaInP LEDs from 0.03 to 0.5 V. After the rapid thermal annealing treatment, the lowest reflection wavelength of ITO showed a red shift of 5~10 nm due to the recrystallization effect. In our experimental range, the deposition rate was confirmed to change the grain size of the ITO thin film. However, there is no evident effect on the light output power and electrical properties of the ITO/AlGaInP LEDs. On the other hand, the oxygen partial pressure during the electron-beam evaporation process plays an important role in determining the LED performance. If the oxygen partial pressure is too low, the ITO film will degrade to a metallic property and shows a transmittance down to 70%. Finally, the ITO/AlGaInP LEDs show a maximum luminance and minimum forward voltage with an oxygen flow of 13 and 5 sccm, respectively. The results indicate the deposition parameters of the ITO TCLs should be compromised in order to achieve high performance AlGaInP LEDs .
URI: http://hdl.handle.net/11455/4081
其他識別: U0005-1007200615525200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1007200615525200
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.