Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4085
標題: 以不同方式成長氧化矽膜及其對氮化鎵發光二極體漏電流之影響研究
Effects of SiO2 Deposition Methods on Leakage Currents of GaN Light - Emitting Diodes
作者: 林昇輝
Lin, Sheng-Hui
關鍵字: SiO2
二氧化矽
GaN
Light-emitting diode
Electron-beam evaporation
Plasma-enhanced chemical vapor deposition
Leakage current
發光二極體
電子束蒸鍍
電漿輔助化學氣相沉積
漏電流
出版社: 精密工程學系所
引用: 參考文獻 [1] C. Y. Chang, “ULSI Technology,” pp. 215~241,1996. [2] 莊達人 編著,VLSI 製造技術,高立圖書出版社,台北,台灣,pp. 234-357,2000。 [3] J. P. Lu, “Solution precursor chemical vapor deposition of titanium oxide thin films,” Thin Solid Films, p. 204, 1991. [4] S. Schiller, “Reactived d.c. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” pp. 369-375, 1979. [5] H. J. Frenck, “ Deposition of TiO2 thin films by plasma enhanced decomposition of tetraiopropya titanate,” pp. 327-335, 1991. [6] E. V. Astrova, and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” pp.142-148, 2000. [7] Z. Knittl, “Optics of thin films,” pp.102-124, 1976. [8] A. C. Adams, “Solid State Technology,” p.135, 1983. [9] A. C. Adams and F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem, “Solid-state Science and Technology,” p. 1545, 1981. [10] M. Konuma, “Film Deposition by Plasma Techniques,” pp. 166,1992. [11] A. C. Adams, “Solid State Technology,” p. 135, 1983. [12] W.D. Brown, “Thin Solid Films,” p. 73, 1990. [13] T. F. Hiroyuki, “Electronic Properties of Interface between Si and TiO2 Deposited at Very Low Temperature,” pp. 1288-1291, 1986. [14] T. Fuyuki and H. Matsunami, “Electronic Properties of Interface between Si and TiO2 Deposited at Very Low Temperature,” Janpanese Journal of Applied Physics, pp. 1288-1291, 1986. [15] K. S. Yeung and Y. W. Lan, “A simple chemical vapor deposition method for depoiting thin TiO2 films,” Thin Solid Films, pp.169-178, 1983. [16] K. S. Yeung and Y. W. Lan, “A simple chemical vapor deposition method for depoiting thin TiO2 films,” pp. 169-178, 1983. [17] 楊天生,薄絕緣層-氧化層,材料會訊,第四卷第一期,pp. 2-5,1996。 [18] 盧以謙,二氧化矽(SiO2)在積體電路中的應用,材料會訊,第四卷第一期,pp.4-7,1996。 [19] A. F. Schuegraf, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE. Vol. 41, p. 1124, May. 1994. [20] F. Schuegraf, C. C. King, and C. Hu, “Ultra-thin Silicon Dioxide Leakage Current and Scaling Limit,” p. 245, 1992. [21] 王建義 編譯,薄膜工程學,全華科技出版,台北,台灣,pp. 234-357,2004。 [22] 施敏 原著,張俊彥 譯著,半導體元件物理與製作技術,第三版,高立圖書有限公司,台北,台灣,pp. 3-7~3-10,2001。 [23] 蔡國強,以高密度電漿化學氣相沉積系統製程非晶相氫化碳化 矽模之研究,豪微米通訊,第九卷第一期,pp. 6-11,2002。 [24] 薛漢鼎,沉積二氧化矽薄膜之化學氣相控制,奈米通訊,第十一卷第一期,pp. 21-30,2004。 [25] S. Liao, and S. C. Lee, “Water-induced room-temperature oxidation of Si–H and–Si–Si–bonds in silicon oxide,” Appl. Phys. Lett, Vol. 80, pp. 1171-1176, 1996. [26] 陳威宏,n 型氮化鎵金氧半場效電晶體元件之製作與特性研究, 國立中央大學光電科學研究所碩士論文,2003。 [27] 羅時湧,低介電常數材料之製程整合研究,國立雲林科技大學電子資訊工程研究所碩士論文,2003 [28] 劉柏村,低介電常數薄膜之檢驗與製程整合技術探討,電子與材料雜誌,第17期,p. 95,2003。 [29] L. peters, “Pursuing the Perfect Low-k Dielectric,” p. 64,1998. [30] T. Tatsumi,Y. Matsubara,and T. Horiuchi, “Application of Fluorinated Amorphous Carbon Thin Film for Low Dielectric Constant Interlayer Dielectrics,” Appl. Phys. Lett,Vol. 37, p. 1809, 1998. [31] 洪昭南,郭有斌,電漿反應器與原理,化工技術雜誌,第9卷,第10期,p. 8,2000。 [32] C. R. Crowell and S. M. Sze,“Solid-State electron,” p. 673, 1965. [33] M. Hoffmann, P. Kopka and E. Voges, “Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems”, IEEE. vol. 9, pp. 1238-1240, 1997. [34] T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices”, IEEE. vol. 6, pp.38-45, 2000. [35] J. L. Jakel, C. E. Rice and J. J. Veselka,“Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett, vol. 41, pp. 607-608, 1982. [36] R. C. Alferness, L. L. Buhl, U. Koren, B. I. Miller, M. Young and T. L. Koch,“Vertically coupled InGaAsP/InP buried rib waveguide filter,” Appl. Phys. Lett. vol. 59, pp. 2573-2578, 1991. [37] S. M. Sze,“Physics of Semiconductor Devices,”p. 403, 1983.
摘要: 近來氮化鎵材料技術日益成熟,通常在氮化鎵發光二極體P-N電極製程完後會在發光區上覆蓋一層保護層,這是用來保護晶粒表面的絕緣層構造,以避免有漏電流的產生。典型的方式是使用二氧化矽或氮化矽作為鈍化作用,其功用在於保護位於保護層下方的電路使不直接外露亦可當作電性絕緣之用。本論文乃是探討以電子束蒸鍍法與電漿輔助化學氣相沉積在兩吋氮化鎵發光二極體晶圓上成長之二氧化矽薄膜,對其漏電流與材料結構特性的關係作一比較研究,並尋求降低漏電流的方法。 本研究發現藉由控制薄膜成長之參數可以改善薄膜漏電流的方法,當以電子束蒸鍍成長二氧化矽時,在氧流量固定為20 sccm而高溫320°C可得到較低的元件漏電流。當降低蒸鍍溫度時,漏電流情形變嚴重,當固定蒸鍍溫度為200°C而無氧流量時,易呈現較低的漏電流,隨氧流量增加漏電流有上升趨勢。而使用電漿輔助化學氣相沉積成長二氧化矽薄膜,改變笑氣及矽甲烷的流量配比,可得到比電子束蒸鍍二氧化矽薄膜更低的元件漏電流。由於漏電流將會降低發光二極體發光效率與壽命,因此良好的蒸鍍方式將是一個重要的環節,本論文利用低阻抗矽晶片研製金屬/絕緣層/金屬樣品來探討漏電流、漏電流密度、折射率、抗蝕刻性等特性研究,發現用電子束蒸鍍比電漿輔助化學氣相之二氧化矽薄膜漏電流高出近十倍,其折射率、抗蝕刻性均較電漿輔助化學氣相沉積的二氧化矽薄膜為差,故使用電漿輔助化學氣相沉積可以得到較低漏電流、高折射率及抗蝕刻性佳之高品質二氧化矽薄膜。因此採用電漿輔助化學氣相沉積二氧化矽膜來改善漏電流,可大幅提昇了元件良率並減少重工的發生,但因電漿輔助化學氣相沉積的產能不高,如何提昇產能是未來要努力的課題。
Recently GaN-based materials have become mature in fabricating light-emitting diodes (LEDs) from green to ultraviolet wavelength region. Generally, the planar-electrode GaN LED structure was covered by a surface passivation layer to reduce the density of surface states and avoid the possible surface leakage current paths. The leakage current level will greatly influence the luminous intensity and reliability of the GaN LED sample. In this thesis, we investigate the effect of SiO2 passivation layer on the leakage current of the GaN LED chip, where the SiO2 layers were deposited by two different methods: electron-beam (EB) evaporation and plasma-enhanced chemical vapor deposition (PECVD). The characteristics of SiO2 layers deposited by EB evaporation and PECVD were compared in terms of refractive index, etch rate and leakage current. It was found that the deposition temperature and oxygen flow rate had large effects on the SiO2 passivation layer during the EB evaporation process. Under a constant oxygen flow rate (20 sccm), the higher deposition temperature (200~320C) used for EB SiO2 deposition makes the lower leakage currents of GaN LEDs. The leakage current was found to increase when the oxygen flow rate increased under a fixed deposition temperature of 200C. For the PECVD process, we can adjust the flow ratio of N2O/SiH4 and the deposition temperature to achieve a high-quality SiO2 thin film, i.e. the higher refractive index and lower etch rate. The leakage current deposited by PECVD can reduce to three order of magnitude lower than that deposited by EB evaporation. Therefore the PECVD passivation process was confirmed to improve the LED leakage current and production yield, avoiding the unwanted rework processes. Nevertheless, due to the lower production capability of PECVD as compared with the EB evaporation, the improvement of PECVD productivity will be the next step of this work.
URI: http://hdl.handle.net/11455/4085
其他識別: U0005-1107200615342800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1107200615342800
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.