Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.advisorHsiharng Yangen_US
dc.contributor.authorYang, Chung-Yaoen_US
dc.identifier.citation1.行政院國家科學委員會,微機電系統技術與應用,民國92年7月。 2.Choi, Y., Park, J. H., Kim, J. H. and Lee ,S. D., “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Materials, 21, pp. 643-646, 2002. 3.Ren, H., Fan, Y. H., Lin, Y. H. and Wu, S. T., “Electronically controlled liquid crystal yields tunable-focal-length lenses,” SPIE’s oemagazine, 4(9), pp. 25-27, 2004. 4.Ren, H., Fan, Y. H. and Wu, S. T., “Polymer network liquid crystals for tunable microlens arrays,” Journal of Physics D: Applied Physics, 37, pp.400-403, 2004. 5.Ren, H., Fan, Y. H., Gauza, S. and Wu, S. T., “Tunable microlens arrays using polymer network liquid crystal,” Optics Communications, 230(4-6), pp. 267-271, 2004. 6.Ren, H. Fan, Y. H., Lin, Y. H. and Wu, S. T., “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Optics Communications, 247(1-3), pp. 101-106, 2005. 7.Fan, Y. H., Ren, H., Liang, X. and Wu, S. T., “Tunable-focus liquid crystal microlens arrays for display applications,” IEEE, 1, pp. 8-9, 2004. 8.Buckley, L., Sands, R., Scribner, D. and Zuccarello, G., “Bio-inspired Optics Draw On Natural Optical Systems to Provide Enhanced Performance,” SPIE’s oemagazine, 4(9), pp. 24, 2004. 9.Kuiper, S. and Hendriks, B. H. W., “Variable-focus liquid lens for miniature cameras,” Applied Physics Letters, 85(7), pp. 1128-1130, 2004. 10.Agarwal, M., Gunasekaran, R. A., Coane, P. and Varahramyan, K., “Polymer-based variable focal length microlens system,” Journal of Micromechanics and Microengineering, 14, pp. 1665-1673, 2004. 11.Chen, J., Wang, W., Fang, J.and Varahramyan, K., “Variable-focusing microlens with microfluidic chip,” Journal of Micromechanics and Microengineering, 14, pp. 675-680, 2004. 12.Jeong, K. H., Liu, G. L., Chronis, N. and Lee, L. P., “Tunable microdoublet lens array,” Optics Express, 12(11), pp. 2494-2500, 2004. 13.Chronis, N., Liu, G. L., Jeong, K. H. and Lee, L. P., “Tunable liquid-filled microlens array integrated with microfluidic network,” Optics Express, 11(19), pp. 2370-2378, 2003. 14.Hecht, E., Optics, Addison Wesley, CA: University Adelphi, pp.262- 268, 2002. 15.Gillmor, S. D., Larson, B. J., Braun, J. M., Mason, C. E., Cruz-Barba, L. E., Denes, F. and Lagally, M. G. “Low-Contact-Angle Polydimethyl Siloxane (PDMS) Membranes for Fabricating Micro-Bioarrays,” 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp. 51-56, 2004.zh_TW
dc.description.abstractThis thesis is to describe a simple method for fabricating variable-focus lens including a flexible lens chamber and a driving mechanism. A variable-focus lens with 2mm in diameter and focus turning range from 20.33mm to 9.36mm based on different liquids in the chamber was carried out from this investigation. Main fabrication steps are described below. First, the patterened microstructure was used as a mold using photolithography process and then using PDMS to cast over the mold. The cured PDMS was peeled off from the mold and becomes the microchannel and circular chamber. Second, a piece of PDMS was used as the substrate. And then making the two PDMS structures to bond together using PDMS solution in the oven was proceeded. After that, trim the proper section as the principal part for this variable-focus lens. Finally using a piezoelectric actuator to drive the chamber membrane can control the flow rate precisely. To change the deformation of PDMS film by varying the microfluidic volume can achieve the desired variable focal length. The characteristics of this method are completely using PDMS as final structure. Only bonding once that can effectively reduce leakage caused by unnecessary bonding crack. No oxygen plasma treatment or etching process were used, it can reduce the instrument cost.en_US
dc.description.tableofcontents摘 要 I ABSTRACT II 目 錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 一、 研究背景 1 二、 研究動機 2 三、 研究方法與目標 3 四、 論文架構 3 第二章 文獻回顧 4 一、 液晶變焦系統 5 二、 電濕潤變焦技術(ELECTROWETTING) 9 三、 壓力變化方式 10 第三章 基本理論 17 一、 厚透鏡之光學系統 17 二、 光路追跡法(ANALYTICAL RAY TRACING) 20 三、 接觸角與曲率半徑 24 四、 驅動體積關係式 26 五、 基本壓電原理 27 第四章 可變焦透鏡之設計與製作 29 一、 前言 29 二、 結構設計與分析 29 三、 可變焦透鏡製程 30 (一) 黃光微影(Photolithography) 31 1. 光罩製作 31 2. 光阻介紹 32 3. 試片前處理 33 4. 旋轉塗佈(spin coating) 34 5. 軟烤(Soft bake) 35 6. 曝光(Exposure) 35 7. 曝後烤(Post exposure bake,PEB) 36 8. 顯影(Development) 36 9. 硬烤(Hard bake) 37 (二) PDMS翻模製程 39 1. PDMS簡介 39 2. 翻膜與接合流程 39 三、 變焦透鏡之驅動 40 (一) 驅動之設計 40 (二) 壓電致動片之特性 41 第五章 實驗結果與分析 43 一、 實驗結果 43 (一) 結構量測 43 1. PDMS接合測試 43 2. 光阻及PDMS結構量測 47 3. 壓電片量測 51 4. 接觸角及曲率半徑量測 57 (二) 光學效能 59 1. 光學模擬 59 2. 像差模擬 65 3. 成像測試 68 二、 結果探討 70 第六章 結論及未來展望 71 一、 結論 71 二、 未來展望 71 參考文獻 73 附錄A 製程儀器設備 75 附錄B 量測儀器設備 79zh_TW
dc.subjectVariable-focus lensen_US
dc.subjectPDMS Bondingen_US
dc.subjectPZT actuatoren_US
dc.titleFabrication of miniaturized variable-focus lens modules using liquid filling techniqueen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.