Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4094
標題: 氮化鎵發光二極體之電漿蝕刻特性研究
Plasma-Etching Characteristics of GaN-Based Light Emitting Diodes
作者: 黃炤舜
Huang, Chao-Shun
關鍵字: GaN
氮化鎵
Inductively coupled plasma
Etch rate
Selectivity
Etch angle
感應耦合式電漿
蝕刻速率
選擇比
蝕刻角度
粗糙度
出版社: 精密工程學系所
引用: 【1】史光國,現代半導體發光及雷射二極體材料技術,全華科技圖書股 份有限公司發行,2001。 【2】S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa et al, ”InGaN/GaN/ AlGaN-based Laser Diodes with Modulation-doped Strained-layer Superlattices.Grown on an Epitaxially Laterally Overgrown GaN Substrete,” Appl. Phys. Lett. 72, 211. (1998). 【3】W.S. Wong, T. Sands, ”Optical Absorption Edge Characteristics of Cubic Boron Nitride Thin Films.” Appl. Phys. Lett. 75, 10. (1999). 【4】J. Han, M.H. Crawford, R.J. Shul, J.J. Figiel et al, “AlGaN/GaN Quantum Well Ultraviolet Light Emitting Diodes,” Appl. Phys. Lett. 73, 1688. (1998). 【5】R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S. Shur, “High-temperature performamce of AlGaN/GaN HFET`s on SiC Subsrates,” IEEE Electron Device Lett. 18, 492.(1997). 【6】羅文雄,半導體製造技術,初版,臺灣培生教育出版有限公司, 臺北,pp. 509~554,2004。 【7】J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively coupled plasma etching of GaN using Cl/Ar and Cl/N gases,” J. Appl. Phys. 85, 1970. (1999). 【8】R.J. Shul, G.B. McClellan, S.A. Casalnuovo and D.J.Rieger, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69, 1119. (1996). 【9】R. J. Shul, G. B. McClellan, S. J. Pearton, C. R. Abernathy, “Comparison of dry etch techniques for GaN,” Electron. Lett. 32, 1408. (1996). 【10】C. B. Vartuli, J. D. Mackenzie, J. W. Lee, C. R. Abernathy, S. J. Pearton, and R. J.Shul, “Cl2/Ar and CH4/H2/Ar dry etching of III-V nitrides,” J. Appl. Phys. 80, 3705. (1996). 【11】莊宗伯,電感耦合電漿蝕刻系統對磷化銦鎵鋁蝕刻之研究,國 立交通大學電子物理研究所碩士學位論文,2000。 【12】莊達人,VLSI製造技術,四版,高立圖書有限公司,臺北,2000。 【13】陳美戎,電感耦合電漿蝕刻系統對氮化鎵蝕刻之研究,國立交 通大學電子物理研究所碩士學位論文,2001。 【14】羅正忠,張鼎張,半導體製程技術導論,初版,臺灣培生教育出版 有限公司,2001。 【15】施敏原著,黃調元譯,半導體元件物理與製作技術,交大出版社, 2002。 【16】黃泓文,氮化鎵相關材料及元件製程技術之研究,國立交通大 學光電研究所碩士學位論文,2002。 【17】涂悅朱,電感耦合電漿系統對AlGaAs及GaN材料的蝕刻與GaN 蕭特基接面之光調制反射光譜的研究,國立交通大學電子物理研究 所碩士學位論文,2000。 【18】J.W. Coburn,“Plasma Etching and Reactive Ion Etching,” American Vacuum Society Monograph Series, New York, 1982. 【19】D.M. Manos and D.L.Flamm,“Plasma Etching:An Introduction,” Academic Press, New York, 1989. 【20】C. Youtsey, I. Adesida, L. T. Romano and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching,” Appl. Phys. Let. 72, 560. (1998). 【21】C.B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. Mackenzie and F. Ren, Solid-State Electronics, 41, 1947. (1994). 【22】R.J. Shul et al, “ Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69, 1119. (1996). 【23】S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren,”GaN: Processing, defects, and devices,” J. Appl. Phys. 86, 1. (1999). 【24】C.B.Vartuli, S. J. Pearton, C.R. Abernathy, R.J. Shul, and F. Ren, Proc. Electrochem. Soc. 97-34, 39, 1998. 【25】R.J. Shul, "ICP Etching of III-Nitrides," in GaN and Related Materials II, edited by S.J. Pearton (Gordon and Breach, New York 1998)。 【26】Ellen Meeks et al, “Simulations of BCl/Cl/Ar plasmas with comparisons to diagnostic,” J. Vac. Sci. Technol. 16, 2227. (1998). 【27】汪建民,材料分析,中國材料科學學會,1998。 【28】張峻瑋,氮化鎵奈米柱光學特性影響之研究,國立交通大學光電研 究所碩士學位論文。 【29】M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1980). 【30】S.A. Smith, C.A. Wolden, M.D. Bremser, et al. ”High rate and selective etching of GaN and AlN using an inductively coupled plasma,” Appl. Phys.Lett. 71, 3631. (1997). 【31】R. Patrick, S. Baldwin, N. Williams, “Application of direct bias control in high-density inductively coupled plasma etching equipment,” J. Vac. Sci. Technol, 18, 405. (2000). 【32】R.J. Shul, G.B. McClellan, S.A. Casalnuovo and D.J.Rieger, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69, 1119. (1996). 【33】江欣達,電感耦合式電漿蝕刻氮化鎵/氮化銦鎵發光二極體之研 究,國立清華大學碩士學位論文,2004。 【34】葉孟欣,電漿表面處理對n型氮化鎵歐姆接觸之影響,國立交 通大學電子物理研究所碩士學位論文,2002。 【35】黃照昌,感應耦合電漿蝕刻氮化鎵之金屬接觸探討,國立海洋 大學光電科學研究所碩士學位論文,2001。 【36】C.B. Fleddermann et al, “Measurements of relative BCl density in BCl-containing inductively coupled radio frequency plasmas,” J. Appl.Phys. 83, 4030. (1998). 【37】R.J.Shul,L.Zhang,C.G.Willison,J.Han,S.J.Pearton,J.Hong, C.R. Abernathy,and L.F.Lester. “Group-III Nnitride etch selectivity in BCl3/Cl2 ICP plasmas,” Cite this article as: MRS Internet J. Nitride Semicond. Res. 4S1, G8.1. (1999). 【38】J.W. Lee, S.J. Pearton, C.J. Santana, J.R. Mileham, et al. “ High ion density plasma etching of InGaP, AlInP, and AlGaP in CH4/ H2/Ar,” J. Electrochem. Soc. 143, 1093. (1996). 【39】王芳崇,以三氯氟甲烷及其混合氣體對矽與多晶矽的電漿蝕刻, 國立交通大學應用化學研究所碩士學位論文,1992。 【40】J.M. Lee, K.M. Chang, I.H. Lee, and S.J. Park, “Cl2-Based Dry Etching of GaN and InGan Using Inductively Coupled Plasma,” J Electrochem. Soc. 147, 1859. (2000). 【41】李鴻志,高密度電漿蝕刻III-V 族半導體材料化學技術分析,半 導體科技, 二月號, 2000。 【42】T. Yoshikawa, Y. Sugimoto, H. Yoshii et al.“Smooth vertical etching of AlGaInP by Cl2 reactive ionbeam etching,” Electron. Lett. 29. 190. (1993).
摘要: 氮化鎵系列半導體材料因其具有直接能隙寬達3.4~6.2 eV,可用於製作藍、綠光及紫外光等波長範圍之發光二極體與檢光器。在三五族元件的製程中,目前大多已使用乾式電漿蝕刻來取代濕式蝕刻。本研究係利用感應耦合式電漿(ICP)之技術對發光二極體之氮化鎵層進行蝕刻,透過改變不同的蝕刻參數如:電漿功率、偏壓功率、腔體壓力、調整三氯化硼、甲烷、氬氣流量之比例,以探討其對蝕刻速率、選擇比、蝕刻後側壁之角度、表面粗糙度之影響。 由實驗數據可發現,ICP功率與腔體壓力對蝕刻速率有較大影響:當調整 ICP功率從100 W增加至500 W之範圍中,於300 W時有最大蝕刻速率值為22 Å/sec;當調整腔體壓力從3 mTorr增加至20 mTorr之範圍中,於5 mTorr時有最大蝕刻速率值為30 Å/sec。腔體壓力、甲烷與氬氣之流量對粗糙度有較大影響:當調整腔體壓力至20 mTorr時,有最大均方根粗糙度值為12 nm;當調整甲烷氣之流量從0 sccm增加至20 sccm之範圍中,於20 sccm時,有最大均方根粗糙度值為28 nm;當調整氬氣之流量從0 sccm增加至30 sccm之範圍中,於20 sccm時,有最大均方根粗糙度值為20 nm。蝕刻過程中,增加物理性轟擊與針狀物之生成,都會使蝕刻後表面粗糙度值增加。對蝕刻後之側壁角度而言,當非等向性蝕刻機制越強時,其蝕刻側壁之斜率將越趨垂直。當調整偏壓下電極功率從50 W增加至250 W之範圍中,於250 W時,有最大角度值為78°;當調整甲烷氣流量為15 sccm時,有最大角度值為72°;當調整氬氣流量為20 sccm時,可有最大角度值為73°。經由不同參數之調整,當ICP之功率為300 W、偏壓功率為100 W、腔體壓力為3 mTorr,氯氣流量為25sccm,三氯化硼流量為15sccm時,可得蝕刻後較平滑表面與較垂直側面,以符合氮化鎵發光二極體製程所要求之條件。
GaN-related alloy semiconductors with wide band gap ranging from 3.4 to 6.2 eV at room temperature are the focus of current research for UV or blue emitters and detectors. During the conventional device processing, the wet chemical etching frequently suffers from undercut issue and is gradually replaced by plasma etching. In this thesis, we investigate the plasma-etching characteristics of GaN-based light emitting diodes using an inductively coupled plasma (ICP) etcher. The etch characteristics were investigated by varying the etching parameters, such as ICP power, bias power, chamber pressure, and gas mixture (BCl3, CH4, Ar). Details of the parameter effects on the etch rate, selectivity, etch profile, and surface roughness of GaN epilayers will be discussed. It was found that the ICP power and chamber pressure have large effect on the etch rate. When the ICP power increased from 100 to 500 W, a maximum etch rate of 22 Å/sec can be obtained at 300 W. When the chamber pressure increased from 3 to 20mTorr, we can get a maximum etch rate value of 30 Å/sec at 5 mTorr. As concerning about the surface roughness, with increasing the chamber pressure (³20 mTorr), CH4 (³20 sccm) and Ar (³ 20 sccm) flows, the maximum root mean square roughness of 12, 12 and 20 nm was obtained, respectively. A maximum etch angle of 78, 72 and 73 (i.e. 90 means vertical etch profile) can be achieved under a bias power of 250 W, CH4 flow of 15 sccm, and Ar flow of 20 sccm, respectively. Under a compromised ICP etching parameters (ICP power: 300 W, bias power: 100 W, chamber pressure: 3 mTorr, Cl2 gas: 25sccm, BCl3 gas: 15sccm), a smoother surface and near vertical side wall for GaN can be obtained for subsequent light-emitting-diode fabrication process.
URI: http://hdl.handle.net/11455/4094
其他識別: U0005-1707200611442100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707200611442100
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.