Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4100
標題: 不同振盪頻率對殘留應力消除之研究
Study of residual stress relief under various vibration frequencies
作者: 廖信智
Liao, Hsin-Chih
關鍵字: residual stress
殘留應力
vibration
振動
出版社: 精密工程學系所
引用: 1. 周浩森 , "銲接殘餘應力和變形" , 銲接與切割 , 第二卷第一期 , pp.83-92 , 1992. 2. 陳宏志, “銲接結構強度學,” 復文書局, 1995. 3. 潘純致, ”殘留應力之涵義” 機械月刊 第十四卷第五期, pp.169-174.1988. 4. 林義成, “減少銲件殘留應力之方法簡介,” 機械技術, no.48 pp.48-58 , 1989. 5. Koichi Masubuchi , “ Residual Stress and Distortion,” Metal Handbook Ninth Edition Vol.6 , pp856-895 , ASM. 6. T. Floyd, “Use shot peening to touggen welds,” Welding Design & Fabrication, pp.66-70. 1985. 7. E. Enke, “Stress relieving by vibration,” Maschinenmarkt, v.61, n.66, pp. 37-38, 1955. 8. H. Buhler and H. G. Pfaizgraf, “Investigations Into the Removal of Internal Stress in Cast Iron and Steel by Mechanical Vibration and Continued Holding in the Atmosphere,” V.D.I. Verlag, pp.56, 1962. 9. H. Buhler and H. G. Pfaizgraf, “Discussion on the Reduction of Residual Stresses in Workpieces Made of Cast Iron,” Weristati and Betrieb, n.2, v.l71, pp.3643, 1964. 10. H. Buhler and H. G. Pfaizgraf, “Investigations into the Reduction of Residual gelding Stresses by Alternating Stress Tests or Mechanical Vibration,” Inst. of Machine Tools and Shaping Technology of the University, Hanover. Schweisse and Schreiden, v.16, n.5, 1964. 11. H. Buhler and H. G. Pfaizgraf,”Relief of Casting Stresses by Jotting: Part 1,” Foundry Trade Journal, v.118, pp.567-569, 1965. 12. G. August and Jr. Hebel, “Subresonant Vibrations Relieve Residual Stress,” Metal Progress, Vol.128 no.6 pp.51-55 1985. 13. “Welding Handbook”, American Welding Society. Miami, FL ,8th edn, Vol. 1, 1987. 14. K. Masubuchi, “Analysis of Welded Structure,” Pregamon Press, 1980. 15. Welding Handbook , Vol. 1 , 7th ed. American Welding Society , Miami , FL , 1976. 16. Koichi Masubuchi, “Residual Stress and Distortion,” Metal Handbook Ninth Edition. Vol.6, pp856-895 , ASM. 17. C. P. Chou abd Y. C. Lin, Mater. Sci. Technol., vol.8 n.2 pp.179-183. 1992. 18. C. P. Chou abd Y. C. Lin, Mater. Sci. Technol., vol.8 n.9 pp.837-834. 1992. 19. C. P. Chou abd Y. C. Lin, J. Mater. Process. Technol. vol.48 pp.693-689. 1995. 20. S. Vaidyanathan, A. F. Todaro, and I. Finnie, J. Mater. Technol. vol.95 pp.233-237 1973. 21. I. Kh. Lokshin, “Vibration treatment and dimensional stabilization of casting,”Russian Castings Production, pp.454-456. 1965. 22. V. M. Sagalevich and A. M. Meisler, “Eliminating welding strains and stresses in sheet constructions by vibration under load,” Svar Proiz, no.9 pp1-4. 1971. 23. “Meta-Lax Stress Relief Procedure” Bonal Technologies , Inc., 1997. 24. R. Dawson and D. G. Moffat, “Vibratory Stress Relief: A Fundamental Study of it is effectiveness,” Journal of Engineering Materials and Technology, v.102, pp.169-176. 1980. 25. G. Gnirss, “Vibration and stress relief - historical development, theory and practical application,” Indian Welding Journal, v. 22, no. 1, pp. 11, 1990. 26. C. A. Walker, A. J.Waddell, and D.J. Johnston, “Vibratory stress relief-an investigation of the underlying processes,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, v.209, n.El, pp51-58, 1995. 27. J.E. Agapakis and K. Masubuchi, “Analytical Modeling of Thermal Stress Relieving in Stainless and High Strength Steel Weldments,” Welding J., vol.33, no.4, pp.161s-166s, 1954. 28. B. Kuvin, “Good vibrations tress-relieve welds,” Welding Design & Fabrication, vol.68, pp.22-24, 1995. 29. F. Shun, “Tests of residual stress on welded structures under vibratory stress relief,” Journal of Dalian University of Technology, vol.34, pp.390-393, 1994. 30. I. Rak, V. Gliha, L. Sidjanin, and B. Petrovski, “J-Integral testing of SA weldments on HSLA steel regarding different treatments after welding,” International Journal for the Joining of Materials, vol.2, no.3, pp.84-93, 1990. 31. M.N. James and A.E. Paterson, “Fatigue performance of 6261-T6 aluminium alloy - constant and variable amplitude loading of parent plate and welded specimens,” International Journal of Fatigue, vol.19, no.1, pp.109s-118s, 1996. 32. R.A. Claxton and A. Lupton, “Vibratory stress relieving of welded fabrications,” Welding and Metal Fabrication, vol.59, no.10, pp541-542, 1991. 33. G.P. Wonzney and G.R. Crawmer, “An Investigation of Vibrational Stress Relief in Steel,” Welding Research Suppl. Vol.47. no.9 pp.411s-419s, 1968. 34. E.A. Solo''eva, A.F. Petrov, O.G. Chikalidi, and A.W. Kim-Khenkina, "Vibration treatment of metal parts," Chemical and Petroleum Engineering, vol.27, no.1-2, p pp.48-49, 1991. 35. G.C. Luh and R.M. Hwang, “Evaluating the effectiveness of vibratory stress relief by a modified hole-drilling method,” International Journal of Advanced Manufacturing Technology, vol.14, no.11, pp.815-823, 1998. 36. T.E. Hebel, “Reducing stress related problems in steel forgings using sub-harmonic vibrational energy,” ASTM Special Technical Publication, pp.148-159, 1996. 37. W. Wu, W.H. Hsu, and F.F.Kao, “The Residual Stress Elimination of Nickel 690 Alloy Using Simulaneously Subresonant Vibration Technique,” Nuclear Science, vol.33, no3, pp.190-199. 1996, 38. W. Wu, “Mechanical behavior of vibration-arc-welded alloy 690,” Materials Transactions, JIM, vol.40, no.12, pp.1456-1460, 1999. 39. W. Wu, “Influence of vibration frequency on solidification of weldments,” Scripta Materialia, vol.42, no.7, pp.61-665, 2000. 40. W. Wu, D.Y. Lin, and S.H. Chen, “Mechanical properties of weldment affected by various vibration frequencies,” Journal of Materials Science Letters, vol. 22, pp. 1829-1831, 1999. 41. 賴銘祥、吳威德、郭飛虎、楊燦楠 , “振盪技術在銲接上的應用,” 銲接與切割, vol.7 no.1. pp.72-76 , 1997. 42. A. S. Y. M. Munsi. A. J. Waddell and C. A. Walker. “Modification of residual stress by post – weld vibration,” Materials Science and technology, vol.17 pp.601-605. 2001. 43. 王栢村, “振動學,” 全華科技圖書股份有限公司, 1996. 44. 顏宏儒 , 陳立智 , 林景正 , “覆銲管件之內壁殘留應力量測分析” , 銲接與切割 , vol.2 no.5, 1992. 45. Rendler N. J. and Vigness I. “ Hole - Drilling Strain Gage Method of Measuring Residual Stress” , Experimental Mechanics , 1966 46. ASTM,” Standard Test Method for Determining Residual Stress by the Hole-Drilling Strain-Gage Method “, pp.715-720,1989. 47. 胡永祥. “利用低速鑽孔法對304L 不鏽鋼銲接件殘留應力之檢測評估,” 成功大學機械工程研究所,碩士論文,1993. 48. M. Kabri, “Measurement of Residual stress by hole-drilling method: Influence of transverse sensitivity of the gages and relieved strain coefficients,” Exprimental Mechanics, pp.252-256.1984. 49. S.P. Timoshenko and J. N. Goodier, “Theory of Elasticity”, 3rd Ed., McGraw-Hill Ind, 1986 50. G. S. Schajer, “Application of Finite Element Calculations to Residual Stress Measurement,” Journal of Engineering Materials and Technology, vol.103, pp.157-163, 1981 51. ASTM, “Standard Test Method for Determining Residual Stress by the Hole-Drilling Strain-Gage Method,” pp.642-648. 1995. 52. C. L. Chow and C. H. Cundiff, Experiment Mechanics, pp.54-59, 1985. 53. 顏宏儒, “應用鑽孔法配合應變規計測殘留應力法,” 檢測技術, vol.9 no.2, pp. 36-41. 1991. 54. 周浩森, “銲接殘留應力和變形,” 銲接與切割, vol.2 no.1 pp.83-92. 1992. 55. 郝士廉、劉棟樑, 專科物理學(下冊), 台北市東華書局, pp.7-8 ,民國82年。 56. 石紹明, 物理學(上), 徐氏基金會,pp430-431. 民國66年。
摘要: 本研究以共振、次共振、小波頻三種不同的振盪頻率,分別對銲接處理後的SS41低碳鋼的板材施以應力消除處理實驗,分別比較共振、次共振、小波頻三種頻率對應力消除之效果。應力之量測採用ASTM 標準 E837 規範的“Determining Residual Stresses by the Hole-Drilling Strain -Gage Method”。銲接處理後銲道背面應力的量測結果顯示,越靠近銲道中間之位置殘留應力值為拉應力並且有增加的趨勢,而銲道中間左右兩邊相對應之應力值,呈現一相對應之結果。因此可以推斷出銲道背面的應力分佈狀態呈現左右對稱,越靠近中間的變形量越高,應力值也越高。振盪處理後試片應力的結果顯示,銲道中間點左邊15mm的位置,共振頻處理可以降低應力28.4%、次共振頻為34.3%、小波頻則為39.3%,即利用小波頻對消除殘留應力的效果最佳。針對波形來分析,小波現象主要為一主波以及一高頻波組合而成,此兩波來源均由振動馬達提供。將共振、次共振、小波頻三種頻率之高頻波比較之,發現在小波頻率時,其高頻波之振幅值為最高;次共振之高頻波次之;共振頻之高頻波之振幅值為最低。因此,運用小波頻對殘留應力之消除效果最佳,歸因於高頻波之振幅達到最高。
In this study, SS41 low carbon steel plate after welding was treated by vibration stress relief under resonance, sub-resonance and small wave, respectively. The objective of this research was compared with the effect of stress relief under different vibration frequencies. The residual stress was determined by using the Hole-Drilling Strain Gage Method of ASTM standard E837.The residual stress was measured in back bead after welding, the result showed that value of residual stress was positive and it was the highest in the center of the weld. The residual stress was symmetrical from center of bead to edges of specimen. It was observed that stress distribution of back bead was symmetrical. The residual stress was measured in back bead after vibration. The results showed that the stress relief of resonance, sub-resonance and small wave were reached to 28.4%, 34.3% and 39.3%, respectively. In analysis of wave form, small wave was combined with main wave and high frequent wave and they were provided by vibration motor. Compared to the high frequencies of resonance, sub-resonance and small wave, it was found that the amplitude of high frequent wave was the highest under small wave frequency and the lowest under resonance.
URI: http://hdl.handle.net/11455/4100
其他識別: U0005-2007200610162000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2007200610162000
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.