Please use this identifier to cite or link to this item:
標題: 微金字塔結構製程與應用於發光二極體
Micro-pyramid structure fabrication and application for LEDs
作者: 廖瑞瑜
Liao, Jui-Yu
關鍵字: LED reflector
(100) si wafer
pyramid structure
出版社: 精密工程學系所
引用: 1. T. Hantschel, S. Slesazeck, P. Niedermannc, P. Eyben and W. Vandervorst, “Integrating diamond pyramids into metal cantilevers and using themas electrical AFM probes,” Microelectronic Engineering, 57, pp.749-754 , 2001. 2. Yu-Chuan Su, Jatan Shah and Liwei Lin, “ Implementation and analysis of polymeric microstructure replication by microinjection molding,” Journal, 14, pp. 415-422, 2004. 3. 林士棋,微金字塔形陣列結構之研究及其應用,東華大學材料科學與工程研究所碩士論文,2005. 4. 黃淳權,微機電概論,高立圖書有限公司,2000. 5. 國科會精儀中心,微機電系統技術與應用,2003. 6. 莊達人,VLSI 製造技術,高立圖書出版,2001. 7. Shatil Haque, Dan Steigerwald, Serge Rudaz, Bob Steward, Jerome Bhat, Dave Collins, Frank Wall, Sudhir Subramanya, Chris Elpedes, Phil Elizondo and Paul S. Martin, “Packaging Challenges of High-Power LEDs for Solid State Lighting,” Lumileds Lighting, 2003. 8. Greger Thornell and Stefan Johansson,” Microprocessing at the fingertips,” Science, 1998. 9. 李宗哲,光纖式微型生醫檢測之螢光激發平台研究,中興大學精密工程研究所碩士論文,2004. 10. J. Akedo, M. Ichiki, Kikuch and Ryutaro, “Fabrication of threedimensional micro structure composed of different materials using excimer laser ablation and jet molding,” IEEE, 1997. 11. Sato K., Shikida M., Yamashiro T., Tsunekawa M., Ito S., “Roughening of Single Crystal Silicon Surface Etched by KOH Water Solutions, Sens.” Acuators A, 73, pp.122, 1999. 12. Baum T., Schiffrin D. J., “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si <100> in KOH for micromachining applications,” J. Micromech. Microeng, 4, pp.338, 1997.
摘要: 本研究在於表述一個簡易之方法製作發光二極體之反射面罩,並提供一個增加散熱的方法。利用(100)矽晶圓之蝕刻品質穩定與可複製的優點,來製作反射罩之結構。主要步驟為利用光學分析軟體Trace Pro3.3,和熱流分析軟體FLOTHERM 4.2 求出發光二極體與反射罩之間幾何參數尺寸以取得最佳光形和散熱效果。應用微機電系統技術(MEMS)的體型蝕刻方法蝕刻出金字塔凹型結構,並以濺鍍上一層導電層,達到導電、絕緣區域;並分成正、負極的目的,再置入發光二極體晶片、打線、封裝,達成陣列型發光源,以期望未來可應用於大型面板之光源應用。 當反射罩底部尺寸大小固定時,蝕刻深度越深,有助於最大光強度之提升。而反射罩與LED 晶片之間的距離(反射罩底部尺寸),也會影響反射罩周圍光線較強的區域;若距離越大,此情況會逐漸減緩,而能得到較均勻之光源。另ㄧ方面,反射罩深度也與散熱效果息息相關,於分析和實驗中可知,當散熱區域越小(反射罩深度越深),則LED 晶片溫度越高,其矽基板自行散熱(無加裝散熱裝置)的效果也越不佳。
This research addresses a simple fabrication method to produce a reflective plane for light emitting diodes (LEDs) and increase LEDs' heat dissipation. Etching (100) crystal silicon provides a stable surface quality and replication advantages for reflective planes. The main steps include optical simulation using Trace Pro3.3 and thermofluidic analysis software FLOTHERM 4.2 to obtain an optimum optical profile and geometrical dimensions for heat dissipation, lithography process, anisotropic etching. The micro-pyramid structure and its array can be produced. Placing LEDs into the pyramid cavities and wire bonding LEDs onto printing circuit board (PCB) are finished steps. This method provides the reflective plane and heat dissipation for LEDs. The further application can be used for a large area LED array for flat panel displays. As fixing the reflective cavity bottom dimension, the deeper etching depth can enhance the luminous intensity. He distance between a reflective plane and LED chip (reflective cavity bottom dimension) also affects luminous intensified area around the reflective plane; as the distance increases, the magnitude of this phenomenon will reduce. Hence a more uniformly distributed light source can be obtained. Furthermore, the depth of a reflective plane is also closely related to the heat dissipation. One can conclude from the analysis and experiments that as the heat dissipation area decreases (the depth of a reflective plane increases), the temperature of LED chip will increase, and silicon substrate's ability to self-dissipate heat (without heat dissipation apparatus) will also reduce.
其他識別: U0005-2107200616163400
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.