Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4118
標題: 以不同製程改善氮化鎵發光二極體出光效率之研究
Improvements in Light Extraction Efficiency of GaN Light-Emitting Diodes Using Various Chip Processes
作者: 蔡家豪
Tsai, Chia-Hao
關鍵字: GaN
氮化鎵
Light-Emitting Diode
Bottom Reflector
Surface Texturing
Antireflection coatings
發光二極體
抗反射層
背金屬反射層
表面粗化
出版社: 精密工程學系所
引用: [1] K. M. Uang, S. J. Wang, S. L. Chen, C. K. Wu, S. C. Chang, T. M. Chen, B. Wen, J. Appl. Phys. Vol. 44, pp. 2516–2519, 2005 [2] S. P. Jung, C. H. Lin, H. M. Chan, Z. Fan, G. Lu1, P. Henry Phys. Stat. Sol. (a) 201, No. 12, pp. 2827–2830, 2004 [3] D. V. Morgan, I. M. Al-Ofi, Y. H. Aliyu, ”Indium Tin Oxide Spreading Layers for AlGaInP Visible LEDs,” Semicond. Sci. Technol, Vol. 15, pp. 67-69, 2000 [4] G. B. Stringfellow, “High Brightness Light Emitting Diode,” Academic Press Inc. Boston, pp. 149-219, 1997 [5] 李嗣涔、管傑雄、孫台平,半導體元件物理,三民書局,1995 [6] K. Nakamo, S. Tomiya, M. Ukita, H. Yoshida, S. Itoh, E. Morita, M. Ikeda, A. Ishibashi, J. Electron Mater, 25, Vol. 1213, 1995 [7] S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. hang, T. P. Chen, K. H. Huang, Appl. Phys. Lett. pp. 78- 312, 2001 [8] 史光國,工業材料,第126期,第154頁,1997 [9]史光國,現代半導體發光及雷射二極體材料技術,全華科技, 2001 [10] S. Nakamura, T. Mukai, M. Senoh, Jpn. J. Appl. Phys. Vol. 32, pp. 16-17, 1993 [11] J. I. Panove and T. D. Moustakas, “Gallium Nitide I,” Academic press, New York, S. Yoshida, S. Misawa, S. Gonda, Appl. Phys. Lett. pp. 42-47, 1983 [12] J. S. Foresi, T. D. Moustakas, ” Metal Contacts to Gallium Nitride,” Appl. Phys. Lett. Vol . 62, pp. 2859-2861, 1993 [13] 呂登復,實用真空技術,國興出版社,2003 [14] X. C. Wang, S. J. Xu, S. J. Chua, K. Li, X. H. Zhang, Z. H. Zhang, K. B. Chong, X. Zhang, Appl. Phys. Lett., 74, pp. 818-820, 1999 [15] R. A. Young,and R. V. Kalin, Scanning Electron Microscopic Techniques for Characterization of Semiconductor Materials, American Chemical Soc, vol. 295, pp. 49-50, 1986 [16] P. Altieri, A. Jaeger, R. Windisch, N. Linder, P. Stauss, R. Oberschmid, K. Streubel,“Internal Quantum Efficiency of High-Brightness AlGaInP Light-Emitting Devices,” J. Appl. Phys. Vol. 98, 2005 [17] M. C. Wu, J. F. Lin, M. J. Jou, C. M. Chang, and B. J. Lee, “High Reliability of AlGaInP LED''s with Efficient Transparent Cotacts for Spatially Uniform Light Emission”, IEEE. Electron Device Lett., Vol. 16, pp. 482-485, 1995 [18] 楊明輝,金屬氧化物透明導電材料的基本原理,工業材料,第179 期,2001 [19] 史光國,現代半導體發光及雷射二極體材料技術-進階篇,全華科技圖書出,2004 [20] 蔡國強、謝嘉民、戴寶通、歐耿良,以高密度電漿化學氣相沈積 系統製程非晶相氫化碳化矽膜之研究,毫微米通訊第九卷第一期,pp. 6-11,2001 [21] C. Dominguez, Jose A. Rodriguez, Francisco J. Munoz and Nadia Zine, “The Effect of Rapid Thermal Annealing on Properties of Plasma Enhanced CVD Silicon Oxide Films,” Thin Solid Films, Vol. 346, pp. 202-206, 1999 [22] M. I. Alayo, I. Pereyra, W. L. Scopel, M. C. A Fantini, “On the Nitrogen And Oxygen Incorporation In Plasmsa Chemical Vapor Deposition (PECVD) SiOxNy films,” Thin Solid Films , Vol. 402, pp. 154-161, 2002 [23] 李正中(譯),光學薄膜的製鍍,其過去與未來光訊,第六十七期,pp. 1-4,1997 [24] 李正中,漫談光學薄膜技術,光電科技雜誌,2005 [25] 莊達人, VLSI 製造技術,高立圖書有限公司,2000 [26] 張郁雯等,真空技術與應用,國科會精密儀器發展中心,pp. 11-14,2001 [27] 白木靖寬、吉田貞史 編著,王建義 編譯,薄膜工程學,全華科技, 2004 [28] 李秉璋、王正和等,金屬反射膜材料簡介工業材料168 期,2000 [29] 李正中,薄膜光學與鍍膜技術,藝軒出版社,1998 [30] X. C. Wang, S. J. Xu, S. J. Chua, K. Li, X. H. Zhang, Z. H. Zhang, K. B. Chong, X. Zhang, Appl. Phys. Lett., 74, pp. 818, 1999
摘要: 氮化鎵系列半導體材料因其具有直接能隙寬達3.4~6.2 eV,可以用於製作藍、綠光及紫外光等波長範圍之發光二極體,在本論文中,我們提出各種不同的製程方式來增加改善以氮化鎵為基材藍光發光二極體的發光強度,包含不同的抗反射層、背金屬反射層、表面粗化相關製程,以達到我們增加發光二極體發光強度此目的。我們首先在晶片背面蒸鍍高反射率的金屬薄膜,藉著高反射率的金屬薄膜能夠使往下的光,再一次反射回去增加光的輸出,目的是為了避免有光從元件的背面耗損,因此選用鍍上金、鈦鋁鈦、鋁作背面金屬反射鏡,來達到外部量子效率提升,鍍完背金屬金整體平均點測值提升了4 mcd亮度大約提升6%,鍍完鋁時整體平均點測值提升26 mcd,整體亮度提升將近42%,最後鍍鈦、鋁、鈦背金屬平均點測值提升了20 mcd,發光效率提升了31%。 在抗反射層中提到因介面不同所以折射係數也不同,會使部分的光來回折回來造成光的損失,因此在兩個介面之間,利用電槳輔助化學氣相系統沉積二氧化矽和氮化矽,以這兩種材料來搭配,用來做為發光二極體的抗反射層,利用此方法間接提升發光二極體的亮度,各條件中以沉積氮化矽(厚度58 nm)之晶片提升19 mcd,發光效率提升79%為較佳值。另外在本論文最後中所提到,以奈米級的氧化鋁顆粒利用塗佈方式,做成表面粗化目的來提升光的輸出,成功使發光二極體在操作電流下之發光強度都有增加,亮度平均提升40.5 mcd,發光效率也提升124%,經由實驗證明具有量產的可行性。
GaN-related alloy semiconductors with wide band gap ranging from 3.4 to 6.2 eV are the focus of current research for blue and ultraviolet emitters. In this thesis, various chip processes, such as bottom reflectors, antireflection (AR) coatings and surface texturing, have been proposed to improve the light extraction efficiency of GaN-based light-emitting diodes (LEDs). Various metal reflectors such as Au, Ti, Al, Ti and Al have been deposited on the backside of sapphire to prevent any optical absorption at the LED/lead frame interface. For Au and Al bottom reflectors, an increase of 4 and 26 mcd in luminous intensity was achieved, respectively. To improve the adhesion of the back reflector, a Ti(20 nm)/Al(300 nm)/Ti(20 nm) multilayer was adopted, which resulting in an increase of 20 mcd corresponding to 31% efficiency improvement. To reduce the internal reflection, plasma-enhanced chemical vapor deposition was employed to deposited SiO2 and SiNx on the ITO/p-GaN surafce. In our experimental range, a 58-nm-thick SiNx AR coating can increase 19 mcd in the luminous intensity, corresponding to 79% efficiency improvement. Finally, the nano-alumina particles have been utilized by spin coating on the ITO/p-GaN surafce as a surface texturing mask. An inductively coupled plasma was used to etch the ITO surface using an Ar/Cl2 gas mixture. Under optimum surface texturing conditions, the luminous intensity of the GaN LEDs can increase 40.5 mcd, corresponding to 124% efficiency improvement. These chip processes presented are not only for improving the GaN-based LED performance, but also suitable for mass production.
URI: http://hdl.handle.net/11455/4118
其他識別: U0005-2807200611213000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2807200611213000
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.