Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4131
標題: 不同封裝基材用於紫外光發光二極體表面黏著型元件特性之影響
Effects of SMD Package Substrates on Performance of Ultraviolet Light-Emitting Diodes
作者: 陳建民
Chen, Jeming
關鍵字: Surface mount device ultraviolet light-emitting diode
表面黏著型封裝
ceramic substrate
thermal analysis
reliability analysis
紫外光發光二極體
陶瓷基板
熱傳分析
信賴性分析
出版社: 精密工程學系所
引用: [1] M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silverail, and J. J. Brown, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. Vol. 81, pp. 2929-2931, 2002. [2] P. E. Burrows, S. R. Forrest, T. X. Zhou, and L. Michalski, “Operating lifetime of phosphorescent organic light emitting devices,”Appl. Phys. Lett. Vol. 76, pp. 2493-2495, 2000. [3] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, “Degradation and failure of MEH-PPV light-emitting diodes,”J. Appl. Phys. Vol. 79, pp. 2745-2751, 1996. [4] B. H. Cumpston, I. D. Parker, and K. F. Jensen, “In situ characterization of the oxidative degradation of a polymeric light emitting device,” J. Appl. Phys. Vol. 81, pp. 3716-3720, 1997. [5] 彭耀鐶, “高分子材料’’ 大中國圖書公司印行,1995年。 [6] C. F. Tsou and Yu. S. Huang, “Silicon-based packaging platform for light-emitting diode,” IEEE Trans. Advanced Packaging, Vol. 29, pp. 607-614, 2006. [7] S. C. Wei et al, “AlGaInP light emitting diodes with mirror substrates fabricated by wafer bonding,” Appl. Phys. Lett. Vol. 75, pp. 2230 -2234, 1999. [8] Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, W. C. Lai, and J. M. Tsai, “Nitride-Based LEDs with textured side walls,” IEEE Sensors J. Vol. 2, pp. 366, 2002. [9] S. Nakamura, T. Mukai, andM. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. Vol. 64, pp. 1687-1689, 1994. [10] S. J. Chang, W. S. Chen, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, C. F. Shen, J. M. Tsai, and S. C. Shei “Nitride-based Flip-Chip LEDs with transparent ohmic contacts and reflective mirrors,” IEEE Trans. Electron Devices, Vol. 29, pp. 403-408, 2006. [11] O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, “Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes,” Appl. Phys. Lett. Vol. 79, pp. 2895, 2001. [12] N. F. Gardner et al, “1.4 times efficiency improvement in transparent substrate (AlxGa1-x)0.5In0.5P light emitting diodes with thin active regions,” Appl. Phys. Lett. Vol. 74, pp. 2230-2232, 1999. [13] M. Broditsky et al, “Light extraction from optically pumped light-emitting diode by thin slab photonic crystals,” Appl. Phys. Lett. Vol. 75, pp. 1036, 1999. [14] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone and Y. Park, “Strongly enhanced phosphor efficiency in GaInN white light -emitting diodes using remote configuration and diffuse reflector cup,” Appl. Phys. Lett. Vol. 44, pp. L649-L651, 2005. [15] L. H. Lee, and W. C. Chen,“High refractive index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate) -titania hybrid materials,” Chem. Mater. Vol. 13, pp. 1137-1142, 2001. [16] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, Member, IEEE, Paul S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE, Vol. 8, pp. 310-320, 2002. [17] A. M. Norris, Dow Corning, Midland, Michigan and M. E. Gladstone, “Silicone materials for chip-scale packaging,” Chip Scale Rev., pp. 260-527, 1998. [18] H. Lee and Y. Y. Earmme, “A fracture mechanics analysis of the effects of material properties and geometries of components on various types of package cracks,” IEEE Trans. Comp Package Manufact Technol, Vol. 19, pp. 168-178, 1996. [19] 史光國, “現代半導體發光及雷射二極體材料技術” 全華科技,台北,台灣,pp. 5-1~5-10,2001年。 [20] Srinath Aanegola, Jim Petroski, and Emil Radkov, GELcore LLC, “Let there be light,” SPIE''s Oemagazine, pp. 16-18, 2003. [21] C. J. Lin, M. J. Lin, S.P. Wu and F. G. Tseng, “High density and through wafer copper interconnections and solder bumps for MEMS wafer-level packaging,” Microsystem Technologies, Vol. 10, pp. 571 -521, 2004. [22] Y. Sato, S. Ichinosawa, H. kanai, “Operation characteristics and degradation,” IEEE J. Selected Topics in Quantum Electronics, Vol. 4, pp. 40-48, 1998.
摘要: 本論文之主要研究目為探討不同封裝基材用於表面黏著型紫外光發光二極體對其元件特性與可靠度之影響,同時以熱傳理論計算分析封裝材料之散熱好壞,並運用材料驗證方法找出紫外光發光二極體適合之封裝材料。 在實驗中我們選用波長為380 nm之氮化銦鎵發光二極體作成表面黏著型元件,利用量測儀器測試比較兩種塑料有引腳之晶片載板、低溫與高溫燒結陶瓷基板來比對四種基材封裝成元件之光電特性差異,結果發現以高溫燒結陶瓷基材封裝之紫外光發光二極體,其前後發光效率可提升44%,而塑料有引腳之晶片載板封裝則亮度分別衰減29.5%與33.5%。此外,在驅動電流20 mA的條件下,使用接面溫度量測系統測試此四種元件之接面溫度與熱阻,高溫燒結陶瓷基材封裝之元件的接面溫度是30.5
This dissertation describes the effects of packaging substrates on the performance of surface-mount ultraviolet (UV) InGaN light-emitting diodes (LEDs). By taking the heat transfer theory and material verification result into account, the optimization of the packaging materials for UV LEDs has been performed. We have selected the 380-nm UV LED chips for these experiments. Various packaging types have been attempted and show different optoelectronic characteristics after device measurements. There are two kinds of plastic with leaded chip carriers (PLCC), low-temperature co-fired ceramic (LTCC) substrate and high-temperature co-fired ceramic (HTCC) substrate. Experimental results show that the light extraction efficiency of HTCC UV LED can be improved up to 44%, and that of the PLCC sample is degraded down to 33.5%. Under a 20-mA current injection, the HTCC UV LED shows a junction temperature of 30.5
URI: http://hdl.handle.net/11455/4131
其他識別: U0005-0502200815561600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0502200815561600
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.