Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4133
DC FieldValueLanguage
dc.contributor洪瑞華zh_TW
dc.contributorRay-Hua Horngen_US
dc.contributor曾堅信zh_TW
dc.contributorJian-Sin Tsengen_US
dc.contributor.advisor武東星zh_TW
dc.contributor.advisorDong-Sing Wuuen_US
dc.contributor.author沈佳輝zh_TW
dc.contributor.authorShen, Chia-Huien_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:27:05Z-
dc.date.available2014-06-06T06:27:05Z-
dc.identifierU0005-1107200708434300zh_TW
dc.identifier.citation參考文獻 [1] D. A. Steigerwald, J. C. Bhat, D. Colins, R. M. Fletcher, M. O. Holomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron, vol. 8, pp. 310-319, 2002. [2] N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for general illumination applications : mixed-color and phosphor-based white sources,” SPIE Proc. Vol. 4445, pp. 137-147, 2001. [3] A. Mills, “Phosphors development for LED lighting,” III-Vs Review, Vol. 18, pp. 32-34, 2005. [4] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip,” Jpn. J. Appl. Phys. Vol. 41, pp. 371-373, 2002. [5] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. Vol. 17, pp. 1160-1162, 2005. [6] Y. Sato, N. Takahashi, and S. Sato, “Full-color fluorescent display devices using a near-UV light-emitting diode,” Jpn. J. Appl. Phys. Vol. 35, pp. 838-839, 1996. [7] Y. C. Liao, C. H. Lin, and S. L. Wang, “Direct white light phosphor : a porous zinc gallophosphate with tunable yellow-to-white luminescence,” J. Am. Chem. Soc. Vol. 127, pp. 9986-9987, 2005. [8] J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. park, “Full-color Ba3MgSi2O8 : Eu2+, Mn2+ phosphors for white-light-emitting diodes,” Sol. Stat. Comm. vol. 135, pp. 21-24, 2005. [9] 史光國,“半導體發光二極體及固體照明”,全華科技圖書公司印行,pp. 5-1~5-7,2005年。 [10] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400 nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Select. Topics Quantum Electron, Vol. 8, pp. 744-748, 2002. [11] H. Hirayama and Y. Aoyagi, “Quaternary InAlGaN based deep UV LED with high-Al-content p-type AlGaN,” SPIE Proc. Vol. 5359, pp. 422-433, 2004. [12] J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. A. Khan, “Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm,” Appl. Phys. Lett. Vol. 81, pp. 4910-4912, 2002. [13] A. J. Fischer, A. A. Allerman, M. H. Crawford, K. H. A. Bogart, S. R. Lee, R. J. Kaplar, and W. W. Chow, “Device performance of AlGaN-based 240-300 nm deep UV LEDs,” SPIE Proc. Vol. 5530, pp. 38-47, 2004. [14] Y. Taniyasu1, M. Kasu1, and T. Makimoto1, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature, Vol. 441, pp. 325-328, 2006. [15] D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Electroluminescence at 375 nm from a ZnO/GaN : Mg/c-Al2O3 heterojunction light emitting diode,” Appl. Phys. Lett. Vol. 88, pp. 141918, 2006. [16] L. Duan, B. Lin, W. Zhang, S. Zhong, and Z. Fua, “Enhancement of ultraviolet emissions from ZnO films by Ag doping,” Appl. Phys. Lett. Vol. 88, pp. 232110, 2006. [17] S. Nakamura, Y. Yamada, and T. Taguchi, “Room-temperature 340nm ultraviolet electroluminescence from ZnS-based light-emitting diodes,” Journal of Crystal Growth, Vol. 214-215, pp. 1091-1095, 2000. [18] I. P. Parkin, “Self-cleaning coatings,” J. Mater. Chem. vol. 15, pp. 1689-1695, 2005. [19] E. F. Schubert, “Light-emitting diodes,” Cambridge University Press, pp. 26-46, 2003. [20] 劉如熹、林益山、康佳正,“白光發光二極體用螢光粉介紹”,全華科技圖書公司印行,pp. 1-10~1-13, 2005年。 [21] J. A. DeLuca, “An introduction to luminescence in inorganic solids,” J. Chem. Educ. Vol. 57, pp. 541-545, 1980. [22] D. A. Skoog and J. J. Leary, “Principles of instrumental analysis,” Saunders College Pub. pp. 79-85, 1992. [23] Y. Uchida and T. Taguchi, “Theoretical and experimental illumination luminous characteristics of white LEDs composed of multi phosphors and near UV LED for lighting,” SPIE Proc. Vol. 4996, pp. 166-173, 2003. [24] S. Core, C. Porac, and L. M. Ward, “Sensation and perception 5th edition,” Wiely, pp. 90-92, 2003. [25] P. K. Brown and G. Wald, “Visual pigments in single rods and cones of the human retina,” Science, Vol. 144, pp. 45-46, 1964. [26] M. Fingerman and F. A. Brown, “A “purkinje shift” in insect vision,” Science, Vol. 116, pp. 171-172, 1952. [27] G. Wyszecki and W. S. Stiles, “Color science : concepts and methods, quantitative data and formulae 2nd edition,” John Wiley and Sons, Inc., pp. 122-125, 1982. [28] D. B. Judd, “Fundamental studies of color vision from 1860 To 1960,” PNAS. Vol. 55, pp. 1313-1330, 1966. [29] D. Malacara, “Color vision and colorimetry : theory and applications,” SPIE Press. pp. 57-59, 2002. [30] G. B. Stringfellow and M. G. Craford, “High brightness light emitting diodes,” Academic Press. pp. 249-251, 1997. [31] 大田登著、陳鴻興、陳君彥譯,“基礎色彩再現工程”,全華科技圖書公司印行,pp. 2-16~2-19,2003年。 [32] M. S. Shur and A. Žukauskas, “Solid-state lighting : toward superior illumination,” IEEE Proc. Vol. 93, pp. 1691-1703, 2005. [32] A.Wold, “Photocatalytic properties of TiO2,” Chemistry of Materials, vol. 5, pp. 280-283, 1993. [33] L. Amy, G. Lu, T. John, and J. Yates, “Photocatalysis on TiO2 surfaces : principles, mechanisms, and selected results,” Chemical Reviews, Vol. 95, pp. 735-758, 1995.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4133-
dc.description.abstract摘要 本論文目的在於建立一套有系統的計算方法,改善傳統紫外光發光二極體搭配紅綠藍螢光粉產生白光發光二極體之生產過程中,皆須使用試誤方式來進行色度座標調整的缺陷,利用此有系統的計算方法決定紫外光發光二極體激發紅綠藍螢光粉所呈現的CIE xy座標,可達到加速產品開發時程、減少材料浪費,並降低紫外光之外洩問題。 在本實驗中我們選用波長385 nm之紫外光發光二極體來個別激發紅綠藍螢光粉,實驗出螢光粉比例與激發功率之關係並分析螢光粉的資料數據,推導出其數學關係式並與系統結合。此程式除了可計算CIE xy座標外,也可以由CIE xy座標反推出需要之紅綠藍螢光粉比率。就計算的準確度而言,選擇(0.340,0.350)、(0.200,0.200)、(0.380,0.350)、(0.325,0.275)、(0.300,0.340)等CIE xy座標點,此系統皆能準確預測,xy誤差為±0.01,其範圍在分類區塊之內,證明此計算系統為一可行方法。此外為了要降低紫外光之外洩問題,在紫外光發光二極體搭配紅綠藍螢光粉產生白光發光二極體上塗佈二氧化鈦,以達到吸收多餘未反應之紫外光能量,經由實驗得知其最佳條件為比例4%、厚度為150 um,紫外光外洩將減少83%。本模擬系統所製作之白光LED在工作電流20 mA時轉換效率為3.49 lm/W,因此若要進一步提升效率,則必須由晶片發光效能與螢光粉效率兩方面加以改善。zh_TW
dc.description.abstractAbstract Recently, the development of ultraviolet light-emitting diodes (UV-LEDs) to pump red-green-blue (R/G/B) phosphors becomes a promising technique for white LED applications. However, the fabrication process usually needs try-and-error experiments in order to tailor the exact chromaticity coordinate. This thesis has established a computation framework of CIE xy chromaticity coordinate for the white LEDs based on the UV-pumped RGB phosphors. In order to establish the pumping efficiency and emitting spectrum of each phosphor, we have measured the relationship between the excitation power (dominant wavelength: 385 nm) and the phosphor/epoxy mixture ratio. This computation framework can not only predict the CIE xy coordinate but also compute the mixture ratio of the R/G/B phosphors. As a result, an accuracy of 0.01 can be achieved between the simulation and measured data for the following cases: (0.340,0.350), (0.200,0.200), (0.380,0.350), (0.325,0.275), and (0.300,0.340). The results indicate that the developed computation framework can be successfully used to derive the exact chromaticity coordinate of the white LED products. Under a 20-mA injection current, the white LED presents a conversion efficiency of 3.49 lm/W. It could be attributed to the lower efficiency of UV LED chip and the R/G/B phosphors. Finally, to avoid the residual UV radiation emitted from the white LEDs, an experimental work using the TiO2 absorber was performed in the LED package. An optimum condition was obtained where the residual UV radiation can be reduced by 83 % using a 4% TiO2/epoxy overcoat with a thickness of 150 um.en_US
dc.description.tableofcontents目次 書名頁 審核頁 授權頁 誌謝辭 i 摘要 ii Abstract iii 目次 iv 表目次 vii 圖目次 viii 第一章 序論 1 1-1 白光LED發展現況 1 1-2 UV-LED 2 1-3 二氧化鈦(TiO2) 3 1-4 研究動機 4 1-5 論文架構 4 第二章 理論基礎 6 2-1 發光二極體原理 6 2-2 螢光發光原理 7 2-3 LED激發螢光粉轉換原理 9 2-4 色彩概論 10 2-4-1 人眼結構 11 2-4-2 視感度 11 2-4-3 三原色 12 2-4-4 黑體輻射 13 2-5 CIE色度座標 14 2-5-1 CIE xy色度座標 14 2-5-2 CIE均等色度座標 16 2-6 二氧化鈦光激發反應 17 第三章 系統設計 18 3-1 螢光粉配比轉光譜能量 18 3-2 光譜能量轉CIE xy座標 19 3-3 製作CIE xy座標圖 20 3-4 製作CIE u’v’座標圖 21 3-5 CIE xy座標點轉換螢光粉配比 22 第四章 實驗規劃與方法結果與討論 24 4-1 實驗目的 24 4-2 實驗儀器與流程 24 4-2-1 實驗材料 24 4-2-2 實驗儀器 25 4-2-3 實驗流程 25 第五章 結果與討論 28 5-1 實驗結果 28 5-2 系統分析 29 5-2-1 CIE xy座標落點預測分析 30 5-2-2 R、G、B三色螢光粉預測分析 30 5-3 TiO2對紫外光之影響 33 第六章 結論 34 參考文獻 36 表目次 表 2-1 紅金石與銳鈦礦比較 40 表 3-1 xyz color matching function 41 表 5-1 激發螢光粉功率數據 42 表 5-2 UV-LED消耗功率 43 表 5-3 固定B螢光粉,不同之R螢光粉比例xy 座標與距離 44 表 5-4 固定B螢光粉,不同之G螢光粉比例xy 座標與距離 45 表 5-5 預測xy座標點測量結果 46 圖目次 圖 1-1 白光LED製作方法-1 47 圖 1-2 白光LED製作方法-2 48 圖 1-3 Blue LED +YAG phosphor 48 圖 1-4 演色性90之白光led 49 圖1-5 InGaN/GaN MQW LED and InGaN/AlGaN MQW LED 50 圖1-6 AlGaInN/AlGaInN MQW LED 51 圖1-7 AlGaN/AlGaN MQW LED 51 圖1-8 AlGaN-based LED 52 圖1-9 210 nm AlN LED 52 圖1-10 ZnO/GaN heterojunction LED 53 圖1-11 ZnS-based LED 53 圖2-1 電子電洞對產生與再復合過程 54 圖2-2 間接能隙、直接能隙 54 圖2-3 發光系統分子能階示意圖 55 圖2-4 主體晶格H與活化劑A螢光發光示意圖 55 圖2-5 主體晶格H、活化劑A與增感劑S螢光發光示意圖 56 圖2-6 可見光光譜圖 56 圖2-7 人眼構造 57 圖2-8 錐狀細胞及桿狀細胞分布 58 圖2-9 視感度 59 圖2-10 顏色匹配函數曲線圖 59 圖2-11 黑體輻射在不同溫度下之光譜圖 60 圖2-12 顏色匹配函數曲線圖 61 圖2-13 CIE xy色度座標圖 61 圖2-14 主波長、色彩純度測量 62 圖2-15 MacAdam橢圓 62 圖2-16 xy與u’v’色度圖中的MacAdam橢圓(10 倍擴大) 63 圖2-17 xy、u’v’色度圖上等色溫線距離比較 64 圖2-18 光激發TiO2反應路徑 65 圖3-1 系統流程圖 66 圖3-2 螢光粉不同比例激發光譜表示法 67 圖3-3 待測點與主波長關係圖 67 圖3-4 色溫光譜圖 68 圖3-5 各直線之相交點示意圖 68 圖4-1 實驗步驟示意圖 69 圖5-1 螢光粉比例與激發出之螢光粉功率關係曲線 70 圖5-2 螢光粉比例與消耗之UV chip功率關係曲線 70 圖5-3 RGB螢光激發光譜 71 圖5-4 RGB螢光粉比例4:4:4預測光譜圖 71 圖5-5 RGB螢光粉比例4:4:4光譜圖 72 圖5-6 RGB螢光粉比例4:4:4之LED 72 圖5-7 不同R螢光粉比例與B點座標距離關係 73 圖5-8 不同G螢光粉比例與B點座標距離關係 73 圖5-9 預測(0.34 , 0.35)與實際測量光譜圖 74 圖5-10 預測(0.2 , 0.20)與實際測量光譜圖 74 圖5-11 預測(0.38 , 0.25)與實際測量光譜圖 75 圖5-12 預測(0.325 , 0.275)與實際測量光譜圖 75 圖5-13 預測(0.30 , 0.34)與實際測量光譜圖 76 圖5-14 (x,y) = (0.336 , 0.338)之LED 76 圖5-15 (x,y) = (0.198 , 0.192)之LED 77 圖5-16 (x,y) = (0.382 , 0.343)之LED 77 圖5-17 (x,y) = (0.324 , 0.260)之LED 78 圖5-18 (x,y) = (0.305 , 0.348)之LED 78 圖5-19 預測點與實際測量點在xy座標位置之差異 79 圖5-20 分類區塊範圍 80 圖 5-21 TiO2比例與UV能量關係 81 圖 5-22 TiO2比例與可見光能量關係 81 圖 5-23 TiO2比例與剩餘能量比例關係 82 圖 5-24 TiO2厚度與UV能量關係 82 圖 5-25 厚度與可見光能量關係 83 圖 5-26 TiO2厚度與剩餘能量比例關係 83zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1107200708434300en_US
dc.subjectUV-LEDen_US
dc.subject紫外光發光二極體zh_TW
dc.subjectPhosphoren_US
dc.subjectCIE coordinateen_US
dc.subjectconversion efficiencyen_US
dc.subject螢光粉zh_TW
dc.subject色度座標zh_TW
dc.subject轉換效率zh_TW
dc.title利用紫外光激發紅綠藍螢光粉進行白光發光二極體之實作研究zh_TW
dc.titleDesign and Fabrication of White-Light Emitters Using RGB Phosphors Excited by UV LEDsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.