Please use this identifier to cite or link to this item:
標題: 氧化銦錫奈米晶格陣列結構之製備技術研究
Fabrication of the indium and tin oxide crystalline nanostructure array
作者: 陳和青
Chen, He-Tsing
關鍵字: 氧化銦錫
出版社: 精密工程學系所
引用: [1]D. L. Morel, E. L. Storyn, A. K. Ghosh, and T. Feng, J. Phys. Chem. 88, 923-933 (1984). [2]M. G. Kang, N. G. Park, K. S. Ryu, S. H. Chang, and K. J. Kim, Sol. Energy Mater. & Sol. Cells 90, 574-581 (2006). [3] B. O’Regan, M. Gräztzel, Nature 353, 737-740 (1991). [4] H. J. An, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, Electrochimica Acta 50, 13, 2713-2718(2005). [5] J. H. Park, S. Kim, and A. J. Bard, Nano Lett. 6, 1, 24-28(2006). [6]J. M. Maćak, H. Tsuchiya, A. Ghicov, and P. Schmuki, Electrochem. Comm. 7 , 1133-1137(2005). [7] M. Paulose, K. Shankar, and O. K. Varghese, Nanotech. 17, 1446-1448(2006). [8] S. Takaki, Y. Aoshima, and R. Satoh, Jpn. J. Appl. Phys. 45, 2714-2741(2006). [9]Q. Wan, P. Feng, and T.H. Wang, Appl. Phys. Lett. 89, 123102-123105(2006). [10] M. Grätzel, J. Photochem. & Photobiol. C: Photochem. Rev. 4 , 145-153(2003). [11]K. Tennakone, G. R. R. A. Kunara, I. R. M. Kottegoda, and V. P. S. Perera, Chem. Commun., 1, 15-16(1999). [12]W. West, Proc. Vogel Centennial Symp., Photogr. Sci. Eng. 18, 35-39(1874). [13] M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon, and R. D. Wright, Chem. Soc. 70, 285-298(1980). [14] T. C. Gorjanc, D. Leong, C. Py, and D. Roth, Thin Solid Films 413, 181-185(2002) [15] C. H. L. Weijtens, J. Electrochem. Soc. 138, 3432-3434 (1991) [16] A. M. Gheidari, E. A. Soleimani, M. Mansorhoseini, S. Mohajerzadeh, N. Madani, and W. S. Kolahi, Mater. Res. Bull. 40, 1303–1307(2005). [17] M. Quass, C. Eggsl, H. Wulff, Thin Solid Films 332, 277-281(1998). [18] K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films 102, 1-46(1983). [19]H. Tomonaga and T. Morimoto, Thin Solid Films 392, 243-248 (2001) [20] 許國銓,材料與社會 84, 110-119(1993). [21] W. J. Co, Thin Solid Films 221, 166-182(1992). [22] F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, Thin Solid Films 359, 244-250(2000). [23] S. S. Kim, S.Y. Choi, C. G. Park, and H. Woo Jin, Thin Solid Films 347, 155-160(1999). [24] C. Cali, M. Mosa, G. Taragia, Sol. St. Electron 42, 877-879(1998). [25] L. H. Meng, M. P. dos Santos, Thin Solid Films 303, 151-155 (1997). [26] Y. H. Young, N. Popovich, E. Chason, and P. David, Thin Solid Films 411, 17-22(2002). [27]溫志中,“塑膠LCD”,化工資訊,11期,頁46,2000年 [28] H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, J. Electrochem. Soc. 148, B152-B159(2001) [29]H. Masuda, F. Hasegwq, and S. Ono, J. Electrochem. Soc. 144, L127-L130 (1997) [30]G. E. Thompson, Thin Solid Films 297, 192-201(1997) [31] G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. G. Nucleation, Nature 272, 433-435 (1978). [32] K. Shimizu, S. Kobayashi, G. E. Thompson, and G. C. Wood, J. Appl. Electrochem. 15, 781-783 (1985). [33]A. P. Li, F. Muller, A. Birner, K. Nielsh, and U. Gösele, J. Appl. Phys. 84, 6023-6026(1998) [34] H. Masuda, K. Fukuda, Science 268, 1466-1468 (1995). [35] H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys. 37, L1340-L1342(1998). [36] C. Y. Liu, A. Datta, and Y. L. Wang, Appl. Phys. Lett. 78, 1, 120-122(2001) [37] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett .71, 19, 2770-2772 (1997) [38]D. H. Choi, P. S. Lee, W. Hwang, K. H. Lee, and H. C. Park, Curr. Appl. Phys. 6, E125-E129(2006)
摘要: 本研究提出以陽極氧化鋁膜為基材,分別將陽極氧化鋁模板正反面浸泡於30wt%之磷酸溶液,進行表面處理。正面蝕刻乃是將孔洞擴大之擴孔處理,當進行濕蝕刻時會因應力集中之差異導致蝕刻不均而生成尖銳孔洞形貌;背面蝕刻則是於去除金屬鋁後進行,主要是針對阻障層進行表面處理。接著以RF射頻濺射技術於3D奈米結構模板上濺鍍一層3D奈米結構氧化銦錫薄 (Indium Tin Oxide, ITO),再經由退火製程改良ITO薄膜之物理特性,以場發射電子顯微鏡觀察ITO薄膜試片之表面形貌,以X光能量分散儀分析ITO之組合成分,以Probe Station量測ITO薄膜之電性。 實驗結果驗證本研究之方法確可於AAO基板上沉積3D奈米晶體結構之ITO薄膜,其形貌與AAO基板之結構相關。在AAO正面濺鍍ITO薄膜,其退火前與退火後之電阻率分別為5.24×10-2Ω-cm與1.46×10-2Ω-cm,退火後約為一般ITO薄膜之20倍,然其3D之結構卻可大大縮小光電子與電極之距離,有利於染料敏化太陽電池之應用。在AAO背面濺鍍之ITO薄膜,其3D蜂巢式奈米結構退火前與退火後電阻率分別為1.22×10-2Ω-cm與8.25×10-3Ω-cm,網狀奈米結構退火前與退火後電阻率分別為3.68×10-2Ω-cm與1.74×10-2Ω-cm。 本研究所發展之3D奈米結構ITO薄膜,因具有3D及高表面積特性,未來在染料敏化太陽電池電極、生醫感測器電極與光電元件之應用上,將有極大之潛能。
In this research, fabrication of crystalline nanobaskets indium tin oxide (ITO) electrode shaped by anodic aluminum oxide (AAO) template for better electron conduction is presented. Two kinds of template by respectively immersing the front side and the barrier-layer side of an AAO film into a 30 wt% phosphoric acid solution were prepared first. The front side etching was a pore widening process, resulting in a rugged and sharp-looking AAO template due to deviations of the stress concentration on the AAO film. The barrier-layer side etching was to modify the surface of the barrier layer such that a contrasting surface was obtained. ITO films were then deposited on both two kinds of porous AAO templates using RF magnetron sputtering. The sputter-coated ITO films were characterized by field emission scanning electron microscopy (FESEM) to illustrate the nanobasket morphologies. Compositions of the ITO films were characterized by energy dispersive X-ray (EDS) analysis. X-ray diffraction (XRD) analysis was conducted to confirm the crystallinity. The crystallinity can be enhanced by annealing at 300℃. Although the conductivity of the ITO nanobasket film is relatively larger than that of the conventional ITO thin film, the harvest efficiency can be tremendously increased due to the nanobasket structure that enables most of the photoexcited electrons to reach their nearest electrodes before dying out. The presented ITO nanobasket films can be further used as a more effective electrode material for photovoltaics such as the dye-sensitized solar cells (DSSC).
其他識別: U0005-1307200711403500
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.