Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4135
標題: 直立式氫化物氣相磊晶反應腔體之設計與驗證
Design and Verification of Vertical Hydride Vapor-Phase Epitaxy Reactor
作者: 白英宏
Bai, Ying-Hong
關鍵字: 氫化物氣相磊晶
HVPE
反應腔體
氮化鎵
計算流體力學
Reactor
GaN
CFD
出版社: 精密工程學系所
引用: [1] G. Attolini, S. Carra, F. Di Muzio, R. Fornari, M. Masi and C. Pelosi, “A vertical reactor for deposition of gallium nitride,” Materials Chemistry and Physics 66, pp.213-218, 2000. [2] A. S. Segal, A. V. Kondratyev, S. Yu. Karpov, D. Martin, V. Wagner, and M. Ilegems, “Surface chemistry and transport effects in GaN hydride vapor phase epitaxy,” Journal of Crystal Growth 270, pp.384-395, 2004. [3] B. Monemar, H. Larsson, C. Hemmingsson, I. G. Ivanov, and D. Gogova, “Growth of thick GaN layers with hydride vapour phase epitaxy,” Journal of Crystal Growth 281, pp.17-31, 2005. [4] P. Kempisty, B. Lucznik, B. Pastuszka, I. Grzegory, M. Bockowski, S. Krukowski, and S. Porowski, “CFD and reaction computational analysis of the growth of GaN by HVPE method,” Journal of Crystal Growth 296, pp.31-42, 2006. [5] 施敏, “半導體元件物理與製作技術,” 國立交通大學出版社, pp.59-63, 2003. [6] S. Strite and H. Morkoç, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B, vol. 10, pp.1237-1266, 1992. [7] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, “AlGaN/GaN quantum well ultraviolet light-emitting diodes,” Appl. Phys. Lett., Vol. 73 (12), pp.1688-1690, 1998. [8] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S. Shur, “Low-frequency noise in SiO2/AlGaN/GaN heterostructureson SiC and sapphire substrates,” IEEE Electron Device Lett. Vol. 18, pp. 492-494, 1997. [9] R. F. Davis, M. J. Paisley, Z. Sitar, D. J. Kester, K. S. Ailey, K. Linthicum, L. B. Rowland, S. Tanaka, and R. S. Kern, “Gas-source molecular beam epitaxy of III-V nitrides,” Journal of Crystal Growth 178, 87, 1997. [10] M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300°C,” Appl. Phys. Lett, Vol. 66, 1083, 1995. [11] J. I. Pankove, “Gallium nitride (GaN) I,” Academic press, San Diego, 1998. [12] H. G. Grimmeiss and H. Koelmans, “Emission near the absorption edge and other emission effects of GaN,” Zeitschrift fuer Naturforschung 14a, 264, 1959. [13] H. P. Maraska, D. A. Stevenson, J. I. Pankove, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett. 22. 303, 1973. [14] S. Yoshida and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phy. Lett. Vol. 42, pp. 427-429, 1983. [15] H. Amano, T. Asahi, and I. Akasaki, “On the theory of optical gain of strained-layer hexagonal and cubic GaN quantum-well lasers,” Jpn. J. Appl. Phy. Vol. 35, pp. 6079-6083, 1990. [16] S. Nakamura, “Sources of inhomogeneity and their effects on the asymmetry of the ferromagnetic resonance lineshapes of single crystal nickel films,” Jpn. J. Appl, Phy. Vol. 30, pp. 1705-1799, 1991. [17] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation,” Jpn. J. Appl. Phys. Vol. 28, pp.2112-2114 ,1989. [18] S. Nakamura, Takashi Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139, 1992. [19] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys. 30, L1705 ,1991. [20] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “High-dose implantation of MeV carbon ion into silicon,” Jpn. J. Appl. Phys. Vol. 31, pp.139-140 ,1992. [21] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystalline GaN,” Applied Physics Letters Vol. 15, pp.327-329,1969. [22] R. J. Molnar, W. Gotz, L. T. Romano, and N. M. Johnson, “Growth of gallium nitride by hydride vapor-phase epitaxy,” Journal of Crystal Growth 178, pp.147-156, 1997. [23] E. A. Stach, M. Kelsch, and E. C. Nelson, “Structural and chemical characterization of free-standing GaN films separated from sapphire by laser lift-off,” Applied Physics Letter Vol.77 pp.1819-1821, 2000. [24] 莊達人, “VLSI製造技術,” 高立圖書股份有限公司, 1995. [25] A. W. Vere, “Crystal growth : principle and progress,” Plenum Press .ch.3, 1996. [26] Gerald B. Stringfellow, “Organometallic vapor-phase epitaxy: theory and practice,” Academic Press, Inc., ch.5, 1989. [27] Gerald B. Stringfellow, “Organometallic vapor-phase epitaxy: theory and practice,” Academic Press, Inc., ch.1, 1989. [28] Gerald B. Stringfellow, “Organometallic vapor-phase epitaxy: theory and practice,” AcademicPress, Inc., pp.55-57, pp.106-109, 1989. [29] Gerald B. Stringfellow, “Organometallic vapor-phase epitaxy: theory and Practice,” Academic Press, Inc., pp. 214-219, 1989. [30] H. Lee and J. S. Harris, “Vapor phase epitaxy of GaN using GaCl3/N2 and NH3/N2,” Journal of Crystal Growth, 169,689, 1996. [31] http://www.cfdrc.com, CFD Research Corporation, 2007. [32] CFDRC “CFDRC user manual,” CFD Research Corporation, Huntsville, Alabama 35805, U.S.A, 2007. [33] S. A. Safvi, N. R. Perkins, and M. N. Horbon, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN/sappire grown by hydride vapor phase epitaxy,” Journal of Crystal Growth 182, pp.233-240, 1997. [34] E. Aujol, J. Napierala, A. Trassoudaine, E. Gillafon, and R. Cadoret, “Thermodynamical and kinetic study of the GaN growth by HVPE under nitrogen,” Journal of Crystal Growth 222, pp.538-548, 2001.
摘要: 氫化物氣相磊晶(Hydride Vapor-Phase Epitaxy, HVPE)製程是半導體製程中重要的一環,也是近年來在半導體製程上重要的技術之一,在製程研發過程中,以數值模擬分析方法是最經濟以及有效的方式。 參考英國Bath大學王望南教授提供的VHVPE之系統示意圖形,自行設計出反應腔體,以美國CFDRC公司所發展的CFD-ACE+計算流體力學(Computation Fluod Dynamics, CFD)軟體,利用數值模擬分析方式,模擬VHVPE成長GaN,探討噴氣頭(Showerhead) 孔徑變化、噴氣頭至晶座間距離、氣體流量、晶座溫度及操作壓力對於反應腔體內流場分佈情況與GaN成長速率的影響,並分析其速度場以及濃度場之狀態。 模擬結果得知(1)增加氣體流量至3倍時,可大大地提升GaN成長速率,而過大流量的反應氣體雖然成長速率佳,但也使得均勻度變差,因此可以多做觀察研究。(2)溫度對於成長速率的影響很大,但超過1373K後,GaN之成長速率卻不隨溫度升高而增加,反而會有幅度的下降。(3)而操作壓力降低至100torr後,渦流(Vortex Flow)有減少趨勢;相對的,此時濃度及密度場均勻度會較好,有助於GaN之成長。(4)縮短噴氣頭至晶座的距離為40mm時,成長速率較快,但均勻度較差;反之,當距離拉長時,會有較佳之成長均勻度。(5)噴氣頭孔徑愈大,晶座表面的濃度分佈愈均勻,意即成長均勻度愈佳。
HVPE manufacturing is an important stage in the process of the semiconductor manufacturing, and it is also the key technique of the semiconductor manufacturing in the recent years. In the manufacturing process, the numerical simulation analytical method is the most economical and effective of all. Making a reference to the VHVPE sketch of Prof.W.N.Wang from England Bath University, a reactor is designed in this paper by oneself. The growth of HVPE into GaN is simulated by the CFD(Computation Fluod Dynamics) software of CFD-ACE+ from U.S. CFDRC corporation as well as the numerical simulation analysis mode. This paper investigated the influence of the showerhead's aperture, the distances from the showerhead to the substrate, the flow rate, the temperature of the substrate and the operating pressure on the flow field distribution as well as GaN growth in the reactor, and also analyzed the mode of velocity field and concentration field. On the basis of the simulation result, the following conclusions could be found out:(1) When the gas flow rate increased to 3 times than original, the growth rate of GaN could be promoted greatly. Though the excessive amount of the gas flow rate could do good to the growth rate, the uniformity became worse. So more observations and researches about that should be done. (2) Temperature had a great influence on the growth rate, but when the temperature exceeded 1373 K, the growth rate of GaN didn't increase with the rise of the temperature; instead, it decreased with the same range. (3) When the operation pressure decreased to 100 torr, vortex flow had the tendency to reduce. Accordingly the concentration field and density field had a relative good uniformity and these were helpful to the growth of GaN. (4) When the distance from the showerhead to substrate was decreased to 40 mm, the growth rate was bigger and the uniformity was relatively bad. Conversely, when the distance increased, the uniformity became better. (5) The bigger the size of the showerhead was, the concentration distribution on the surface of the substrate was more uniform, which means that the growth uniformity was better.
URI: http://hdl.handle.net/11455/4135
其他識別: U0005-1401200816104300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1401200816104300
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.