Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4138
DC FieldValueLanguage
dc.contributor林哲信zh_TW
dc.contributor王文騰zh_TW
dc.contributor陳志銘zh_TW
dc.contributor.advisor王東安zh_TW
dc.contributor.author陳建華zh_TW
dc.contributor.authorCheng, Cheng-Huaen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:27:06Z-
dc.date.available2014-06-06T06:27:06Z-
dc.identifierU0005-1608200714102800zh_TW
dc.identifier.citationBaltzer, M., Kraus, T., and Obermeier, T., 1997. “A linear stepping actuator in surface micromachining technology for low voltages and large displacements;” Proceedings of International Conference on Solid-State Sensors and Actuators, Chicago, IL, pp. 781-784. Cho, Y.-H., Pisano, A. P., and Howe, R. T., 1994. “Viscous damping model for laterally oscillating microstructures,” Journal of Microelectromechanical Systems, vol. 3, pp. 81-87. Daneman, M. J., Tien, N. C., Solgaard, O., Pisano, A. P., Lau, K. Y., and Muller, R. S., 1996. “Linear microvibromotor for positioning optical components,” Journal of Microelectromechanical Systems, vol. 5, pp. 159-165. Fearing, R. S., 1995. “Survey of sticking effects for micro parts handling,” Proceedings of International Conference on Intelligent Robots and Systems, vol. 2, pp. 212-217. Keller, C. G., and Howe, R. T., 1997. “Hexsil tweezers for teleoperated microassembly,” Journal of Microelectromechanical Systems, vol. 5, pp. 72-77. Kwon, H. N., Jeong, S. H., Lee, S. K., and Lee, J. H., 2003. “Design and characterization of a micromachined inchworm motor with thermoelastic linkage actuators,” Sensors and Actuators A, vol. 103, pp. 143-149. Lee, A. P., and Pisano, A. P., 1990. “Repetitive impact testing of micro mechanical structures,” Proceedings of ASME Winter Annual Meeting, Dallas, TX, 1990, pp. 51-67. Muller, R. S., and Lau, K. Y., 1998. “Surface- Micromachined Microoptical Elements and System,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1705-1720. Pai, M., and Tien, N. C., 2000. “Low voltage electrothermal vibromotor for silicon optical bench applications, “ Sensors and Actuators A, vol. 83, pp. 237-243. Park, J.-S., Chu, L. L., Oliver, A. D., and Gianchandani, Y. B., 2001. “Bent-beam electrothermal actuators: II. Linear and rotary microengines,” Journal of Microelectromechanical Systems, vol. 10, pp. 255-262. Reid, J. R., Bright, V. M., and Butler, J. T., 1998. “Automated assembly of flip-up micromirrors,” Sensors and Actuators A, vol. 66, pp. 292-298. Saitou, K., Wang, D.-A., and Wou, S. J., 2000. “Externally resonated linear microvibromotor for microassembly,” Journal of Microelectromechanical Systems, vol. 9, no. 3, pp. 336-346. Tas, N. R., Sonnenberg, T., Molenaar, R., and Elwenspoek, M., 2003. “Design, fabrication and testing of laterally driven electrostatic motors employing walking motion and mechanical leverage,“ Journal of Micromechanics and Microengineering, vol. 13, pp. n6-n15 Yeh, R., Hollar, S., and Pister, K. S., 2002. “Single mask, large force, and large displacement electrostatic linear inchworm motors,” Journal of Microelectromechanical Systems, vol. 11, pp. 330-336. Zhao, X., Dankowicz, H., Reddy, C. K., and Nayfeh, A. H., 2004. “Modelling and simulation methodology for impact microactuators,” Journal of Micromechanics and Microengineering, vol. 14, pp. 775 - 784.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4138-
dc.description.abstract本研究設計一個應用於微組裝上之微振動馬達。此微振動馬達主要由滑塊及兩組衝擊器所組成。線性滑塊藉著衝擊器振動之撞擊而能往前或往後移動,藉著壓電器振動,可選擇性的共振衝擊器。微振動馬達的數學模型被建立,並使用 Matlab simulink 進行數值模擬,且探討外部驅動頻率及間距對系統之影響。所得之結果可應用於微振動馬達的設計,所設計的線性微振動馬達能克服黏著力並獲得較佳的傳遞速度。最後提出一個微振動馬達的製程方式。zh_TW
dc.description.abstractDesign and analysis of a microvibromotor for microassembly is investigated here. The microvibromotor is composed of a main slider and two pairs of impacters. The forward and backwark motion of the slider is controlled by vibratory impacts exerted by the impacters. The impacters are selectively resonated by a piezoelectric vibrator. An analytical model of the microvibromotor is derived, its equation of motion is numerically solved by using Matlab simulink. The influences of frequencies of the external vibration and the gap between the slider and the impactors are discussed. Results of the simulation are applied to the design of the microvibromotor, to overcome the adhesion between the slider and the substrate and to obtain larger speed of the slider. Finally a fabrication process of the microvibromotor is proposed.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 v 符號表 vi 第一章 緒論 1 第二章 文獻回顧 4 2.1 線性致動器 4 2.1.1 驅動原理分類 4 2.1.2 致動器與滑塊接觸運動分類 4 2.2 UV-LIGA製程 5 第三章 微振動馬達設計 6 3.1 設計與作動原理 6 3.2 懸臂式衝擊器的設計 6 3.3 微振動馬達系統數學模型建立 7 3.4 衝擊器-滑塊系統模擬 9 3.4.1 不同外部驅動頻率對衝擊器-滑塊系統影響 9 3.4.2 不同間距c對衝擊器-滑塊系統影響 10 3.5 前後衝擊器幾何尺寸設計 10 第四章 製程設計 22 4.1 微振動馬達之製程步驟 22 第五章 結論與未來研究方向 24 5.1 結論 24 5.2 未來研究方向 24 參考文獻 25 附錄A 雙V型懸臂樑kx值推導 27 附錄B Matlab simulink model 33zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1608200714102800en_US
dc.subjectMicrovibromotoren_US
dc.subject微振動馬達zh_TW
dc.subjectmicroassemblyen_US
dc.subjectmicroactuatorsen_US
dc.subject微組裝zh_TW
dc.subject微致動器zh_TW
dc.title微振動馬達之設計與分析zh_TW
dc.titleDesign and Analysis of a Microvibromotoren_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.