Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4141
標題: 高感度微型純電容式麥克風之研製
Investigation of High Performance Miniature Condenser Microphone
作者: 徐振諄
Shu, Zhen-Zhun
關鍵字: Condenser microphone
電容式麥克風
Wafer transfer technique
Frequency response
脫離技術
頻率響應
出版社: 精密工程學系所
引用: 參考文獻 [1] O. Brosze, “Aufoau und Wirkungsweise eletroakustischer Wandler”, Der Fernmelde Ingenieur, 35. Jahrgang, German, Heft 6, pp. 1-36, Heft 7, pp. 1-35, 1981. [2] J. K. Hilliard, “Electroacoustics to 1940”, J. Acoust. Soc. Am., vol. 61, pp. 267-273, 1977. [3] E. C. Wente, “A condenser as a uniformly sensitive instrument for the absolute measurement of sound intensity”, Phys. Rev., vol. 10, pp. 39-63, 1917. [4] G. M. Sessler and J. E. West, Electret transducers: a review, J. Acoust. Soc. Am., vol. 53, pp. 1589-1600, 1973. [5] G. M. Sessler and J. E. West, “Self-biased condenser microphone with high capacitance”, J. Acoust. Soc. Am., vol. 34, pp. 1787-1788, 1962. [6] M. Royer, J. O. Holmen, M. A. Wurm, O. S. Aadland and M. Glenn,” ZnO on Si integrated acoustic sensor”, Sensors and Actuators, A, vol. 4, pp. 357-362, 1983. [7] D. Hohm and R. Gerhard-Multhaupt, “Silicon dioxide electret trans- ducer”, J. Acoust. Soc. Am., vol. 75, pp. 1297-1298, 1984. [8] P. R. Scheeper, A. G. H. van der Donk, W. Olthuis, and P. Bergveld, “A review of silicon microphones”, Sensors and Actuators, A, vol. 44, pp. 1-11, 1994. [9] R. Schellin and G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges“, Sensors and Actuators, A, vol. 32, pp. 555-559, 1992. [10] 邢泰剛,微機電系統技術與應用, Ch. 7-4, pp. 544, 2003. [11] P. R. Scheeper, A. G. H. van der Donk, W. Olthuis, and P. Bergveld, “Fabrication of silicon condenser microphone using single wafer technology”, J. Microelectromech. Syst. vol. 1, pp. 3, 1992. [12] D. Hohm and G. Hess, “A subminiature condenser microphone with silicon nitride membrane and silicon back plate”, J. Acoust. Soc. Am, vol. 85, pp. 476-480, 1989. [13] J. Bergqvist and F. Rudolf, “A new condenser microphone in silicon”, Sensors and Actuators A, vol. 21-23, pp. 123-125, 1990. [14] J. Bergqvist and F. Rudolf, J. Maisano, F. Parodi and M. Rossi, “A silicon condenser microphone with a highly perforated backplate”, Proceedings of Transducers ’91, vol. 24-27, pp. 266-269, 1991. [15] W. Kuhnel, “Silicon condenser microphone with integrated field effect transistor”, Sensors and Actuators A, vol. 25-27, pp. 521-525, 1991. [16] T. Bourouina, S. Spirkovitch, F. Baillieu and C. Vauge, “A new silicon condenser microphone with a p+ silicon membrane”, Sensors and Actuators A, vol. 31, pp. 149-152, 1992. [17] M. Gayford, Microphone engineering handbook, 1994. [18] P. M. Morse, “Vibration and Sound, International series in pure and applied physics”, McGraw-Hill, New York, 2nd edn., pp. 189, 202, 210, 222, 244 and 452, 1948. [19] G. M. Sessler and J. E. West, “Electret transducers : a review”, J. Acoust. Soc. Am., vol. 53, pp. 1589-1600, 1973. [20] 陳建盛, 國立交通大學電機與控制工程系碩士論文, 1999. [21] M. Mullenborn, P. Rombach, U. Klein, K. Rasmussen, J. F. Kuhmann, M. Heschel, M. Amskov Gravad, J. Janting, J. Branebjerg, A. C. Hoogerwerf, S. Bouwstra, “Chip-size-packaged silicon micro- phones”, Sensors and Actuators, A, vol. 92, pp. 23-29, 2001. [22] M. P. Norton, “Fundamentals of Noise and Vibration Analysis for Engineer", New York:Cambridge University Press, pp. 197-200, 1969 [23] A. G. H. van der Donk, P. Bergveld and J. A. Voorthuyzen, “Optimal design of electret microphone MOSFET preamplifier”, J. Acoust. Soc. Am., vol. 91, pp. 2261-2269, 1992. [24] A. G. H. van der Donk, J. A. Voorthuyzen and P. Bergveld, “General considerations of noise in microphone preamplifiers”, Sensors and Actuators, A, vol. 25, pp. 515-520, 1991. [25] W. R. Bevan, R. B. Schulein and C. E. Seeler, “Design of a studio-quality condenser microphone using electret technology”, J. Audio Eng. Soc., vol. 26, pp. 947-957, 1978. [26] B. V. Microtel, Specification of electret microphone MODEL 32, Amsterdam, June, 1986. [27] J. Bergqvist and F. Rudolf, “New condenser microphone in silicon”, Sensors and Actuators, A, vol. 21, pp. 123-125, 1990. [28]林宗潁,國立中興大學精密工程研究所碩士論文, 2006. [29] C. W. Tan and J. Miao, “Analytical modeling for bulk micro- machined condenser microphone”, Acoustical Society of America, vol. 120, pp. 750-761, 2006. [30] A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate”, Sensors and Actuators, A, vol. 85, pp. 116-123, 2000. [31] T. Tajima , T. Nishiguchi, S. Chiba, A. Morita, M. Abe, K. Tanioka N. Saito, M. Esash “High-performance ultra-small single crystalline silicon microphone of an integrated structure”, Microelectronic Engineering, vol. 68, pp. 508–519, 2003. [32] M. Pedersen, “A Polymer Condenser Microphone Realised on Silicon Containing Preprocessed Integrated Circuits”, 1997. [33] D. Cattin, A.Faes, B. Margesin, R. Oboe, ”Modeling and Control of IRST MEMS microphone”, IEEE International Workshop on Advanced Motion Control, vol. 2006, pp. 512-516, 2006. [34] Y. Iguchi, M. Goto, M. Iwaki, A. Ando, K. Tanioka, T. Tajima, F. Takeshi, S. Matsunaga, Y. Yasuno, ”Silicon microphone with wide frequency range and high linearity”, Sensors and Actuators, A, vol. 135, pp. 420-425, 2006. [35] C. W. Tan and J. Miao “Analytical modeling for bulk micromachined condenser microphones”, Journal of the Acoustical Society of America, vol. 120, pp. 750-761, 2006. [36] A. E. Kabir, R. Bashir, J. Bernstein, J. De Santis, R. Mathews, J. O. O’Boyle, C. Bracken,”High sensitivity acoustic transducters with thin P+ membranes and gold back-plate”, Sensors and Actuators, A, vol. 78, pp. 138-142, 1999. [37]蔣宇寧,國立中興大學精密工程研究所碩士論文, 2006. [38] http://www.sonion.com/servlet/page?_pageid=14574&_dad=portal_e xt&_schema=PORTAL_EXT
摘要: 本論文主要是利用半導體製程技術來製作聲音感測器,即為微型純電容式麥克風。在研究上主要包含了兩項工作:(1)微型純電容式麥克風之設計與模擬分析。文中利用Mathcad和Ansys軟體來模擬分析麥克風各部份組成最佳的設計參數,藉此得到低功率及高靈敏度的純電容式微型麥克風;(2)微型純電容式麥克風之製程建立及其結果量測及驗證。 本論文主要是設計及製作純電容式微型麥克風元件來提升其特性及功能,將所需的電路元件封裝成為完整的微型麥克風,而後量測驗證其麥克風的機械與電容特性是否與設計結果相符。本論文利用微機電製程技術的高可靠性及高精度之優點來製作的微型麥克風;以製程方式來區分,傳統多數是以單晶片體蝕刻或是晶圓接合的方式製作而成,而本論文則是採用脫離的方式完成各個元件製程,此法不但可以避免單晶片使用體型微加工時其製程之繁雜、又不易製作的缺點,亦可以避免雙晶片成本高、以及可能影響整合IC電路之高溫鍵合的缺點,本論文成功的提升了麥克風的製程良率可達九成,同時元件不再包含矽基板,所以由原本380 μm縮小了整體體積及高度為160 μm,亦可避免過高溫錫爐時駐極體電容式麥克風電荷衰減的不穩定性、耐溫性不佳的問題,而純電容式微型麥克風可穩定控制電壓,此外於製程上又可免於最後切割造成的元件損壞,基板更可以重覆回收利用。完成封裝後,即量測微型麥克風的各個電容及機械特性,驗證是否與設計相符,而最終在麥克風的操作範圍及靈敏度大小,將會搭配放大器及電路在無響室量測出純電容式微型麥克風的頻率響應及麥克風各式聲學特性。量測範圍為20 Hz~20 kHz,於1 kHz的取樣頻率下,並外加12 V的直流偏壓,所量測出的麥克風感度為3.94 mV/Pa(ref. 1 V/Pa),相較於目前純電容式麥克風市售產品,本論文已研製符合對於微型純電容式麥克風高感度、低功率及超高頻寬的需求。
This thesis integrates the MEMS and semiconductor techniques to develop a new acoustic sensor. This acoustic sensor is a condenser microphone. Our study mainly was divided into two parts: One is the design and simulation of the miniature condenser microphone and the other is the fabrication, measurement and verification of the miniature condenser microphone. The paper presents a high sensitivity miniature condenser microphone fabricated by wafer transfer technique. The MEMS microphone nowadays is distinguished by the process that includes both single-chip and wafer bonding technology. Using the wafer transfer technique, it can avoid the complicated and difficult processes of bulk micromachining for single-chip. It can also reduce the high cost of double wafer and the possible influence that high temperature may affect the circuit. It is worthy to mention that the microphone component does not include the silicon substrate. The total volume will decrease validly. Moreover, it can prevent the damage results from the last dicing. The substrate can also be recycled. However, the microphone is based on the concepts of diaphragm thickness, number of acoustic holes and plate area, the thickness of the backplate, and the influence of the chamber. In this thesis, the measurement of a miniature condenser microphone, covering, both the electrical and the mechanical characteristics, is presented. Finally, the results show in very good agreement with the design of the miniature condenser microphone. In order to obtain the dynamic range and the sensitivity of condenser microphone, the finished microphone is combined with the amplifier circuit then being examined with frequency response in the anechoic chamber. The measured ranges from 20 Hz~20 kHz which human ears can receive. The sensitivity 3.94 mV/Pa(ref. 1 V/Pa) can be obtained under 12 V D.C. bias(@1 kHz). It has achieved the market demand. Details of the design, fabrication, and electrical and acoustic characterization of the microphone will be presented.
URI: http://hdl.handle.net/11455/4141
其他識別: U0005-1907200708191100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1907200708191100
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.