Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4149
標題: 表面黏著型藍光發光二極體光形模擬與取光效率之研究
Investigation of Beam Pattern and Light Extraction Efficiency of SMD-Type Blue LEDs
作者: 葉天守
Yeh, Tien-Shou
關鍵字: Blue LED
藍光發光二極體
Beam Pattern
Optical Lens
Optical Simulation
光形設計
透鏡
光學模擬
出版社: 精密工程學系所
引用: 參考文獻 [1] Ann W. Norris, Maneesh Bahadur, and Makoto Yoshitake, “Novel silicon materials for LED packaging,” Proc. SPIE, Vol. 5941, pp. 594115-1~594115-7, 2005. [2] John Bortz, Narkis Shatz, and Matthijs Keuper, “Optimal design of a nonmaging TIR doublet-lens illumination system using an LED sorce,” Proc. SPIE, Vol. 5529, pp.8-16, 2004. [3] Ivan Moreno, “Design of LED spherical lamps for uniform far-field illumination,” Proc. SPIE, Vol. 6046, pp. 60462E-1~60462E-7, 2006. [4] Gao Guangjun, Li Lin and Huang Yifan, “Using spherical aberrations of a single lens to get a uniform LED illumination, “Proc. SPIE, Vol. 5637, pp. 551-560, 2005. [5] Gregory Hallock Smth, “Lens Design,” Willmann-Bell, Inc., Virginia, pp. 79-97, 1998. [6] William A. Parkyn and David G. Pelka, “Uniformly illuminating dual-lens system for LED collimation,” Proc. SPIE, Vol. 4446, pp. 232-238, 2002. [7] Harald Ries, and Julius Muschaweck, “Tailoring freeform lenses for illumination,” Proc. SPIE, Vol. 4442, pp. 43-50, 2001. [8] Jee-Gong Chang, Charles, Lun-De Liao, and Chi-Chuan Hwang, “Enhancement of the optical performances for the LED backlight systems with a novel lens-cap,” Proc. SPIE, Vol. 6289, pp. 62890X-1~62890X-6, 2006. [9] Sergey Kudaev, and Peter Schreiber, “Optimization of symmetrical free shape non-imaging concntrators for LED light source application,” Proc. SPIE, Vol. 5942, pp. 60462E1~60462E-10, 2005. [10] Paul C.-P. Chao, Lun-De Liao, and Chi-Wei Chiu, “Design of a novel LED lens cap and optimization of LED placementin a large area direct backlight for LCD-TVs,” Proc. SPIE, Vol. 6196, pp. 61960N-1~61960N-09, 2006. [11] http://www.lumileds.com/pdfs/DS09.pdf, “Lumileds Luxeon Technical Data Sheet DS09”. (08/11/2005) [12] http://www.lumileds.com/pdfs/DS56.pdf, “Lumileds Luxeon Technical Data Sheet DS56”. (03/31/2007) [13] http://www.lumileds.com/pdfs/DS25.pdf, “Lumileds Luxeon Technical Data Sheet DS25”. (03/21/2006) [14] Lawrence G. Conn, “Evaluation of LEDs for automotive signal lighting,” Proc. SPIE, Vol. 4641, pp. 1-6,2002. [15] K. Eichhorn, Hella KgaA Hueck & Co., Lippstadt, “LED forntlighting,” Proc. SPIE, Vol. 5633, pp. 7-14, 2005. [16] J. Jiao, and B. Wang, “Entendue concerns for automotive headlamps using white LEDs,” Proc. SPIE, Vol. 5187, pp. 234-242, 2004. [17] T. Luce, “LED headlamp – The spiny path to a legal headlamp,” Proc. SPIE, Vol. 5663, pp. 112-121, 2005. [18] K. Eichhorn, and H. K. Hueck, “LED in automotive lighting,” Proc. SPIE, Vol. 6134, pp. 613405-1~613405-6, 2006. [19] O. Dross, A.Cvetkovic, J. Chaves, P. Benitez, and J. C. Minano, “LED headlight architecture that creates a high quality beam pattern independent of LED shortcomings,” Proc. SPIE, Vol. 5942, pp. 59420D-1~59420D-10, 2005. [20] A. Cvetkovic, O. Dross, J. Chaves, P. Benitez, J. C. Minano, and R. Mohedano, “Etendue preserving Mixing and projection optics for high brightness LEDs applied to automotive headlamps,” SPIE, Vol. 6342, pp. 63420R-1~63420R-11, 2006. [21] ECE Regulation Web, http://www.unece.org/trans/main/ [22] M. Wada, T. Yendo, T. Fuji, and M. Tanimoto, “Road-to-vehicle communication using LED traffic light,” IEEE, pp. 601-606, 2005. [23] M. Akanegawa, Y. Tanaka, and M. Nakagawa, “Basic study on traffic information system using LED traffic lights,” IEEE Transations on Intelligent Transportation Systems, Vol. 2, pp. 197-203, 2001. [24] Y. Sugawara, M. Akanegawa, Y. Tanaka, and M. Nakagawa, “Improve of tracking methods in information providing system using LED traffic lights,” IEEE, Vol. 2, pp. 1207-1211, 2002. [25] 中華民國國家標準(CNS-14546), “發光二極體交通號誌燈燈面及燈箱”, 經濟部標準檢驗局, 類號:C7259, 96年2月27日。 [26] J. F. V. Derlofske, M. McColgan, and Y. Zhon, “The challenges of optically designing roadway lighting,” Proc. SPIE, Vol. 5942, pp. 59420A-1~59420A-10, 2005. [27] T. Taguchi, Y. Uchida, T. Setomoto, and K. Kobashi, “Application of white LED lighting to energy-saving type stree lamps,”Proc. SPIE, Vol. 4278, pp. 7-12, 2001. [28] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Cman, A.Stockman, F. A. Kish, M. G. Craford, T. s. Tan, and C. P. Kocot, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting > 50 external quantum efficiency,” Appl. Phys. Lett., Vol. 75, pp. 2365-2367, 1999. [29] S. J. Lee, and S. W. Song, “Efficiency improvement in light-emitting diodes based on geometrically deformed chips,” SPIE, Vol. 3621, pp. 237-248, 1999. [30] C. C. Sun, and C. Y. Lin, “Optical modeling and light extraction of an LED with surface roughning and sharpening,” Proc. SPIE, Vol. 5187, pp. 100-106, 2004. [31] R. H. Horng, D. S. Wuu, S. C. Wei, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP/AuBe/glass Light-emitting diodes fabricated by wfer bonding technology,” Appl. Phys. Lett., Vol. 75, pp. 154-156, 1999. [32] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., Vol. 93, pp. 9383-9385, 2003. [33] T. Fulii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emiting diodes via surface roughening,” Appl. Phys. Lett., Vol. 84, pp. 855-857, 2004. [34] J. J. Wierer, D. A. Steigrwald, M. R. Krames, J. J. O’Shea, and M. J. Ludowise, “High-power AlGaInN flp-chip light emitting diodes,” Appl. Phys. Lett., Vol. 78, pp. 3379-3381, 2001. [35] 史光國, “現代半導體發光及雷射二極體材料技術”, 全華科技, 台北,pp. 4-1~4-4,2001年。 [36] S. O. Kasap, “Optoelectronics and Photonics Principles and Practices,” Prentice-Hall, USA, pp. 16-27, 2001. [37] 李正中, “薄膜光學與鍍膜技術”, 藝軒圖書,第二版,台北,pp. 73-84,2001年。 [38] Ivan Moreno, “Spatial distribution of LED radiation,” Proc. SPIE, Vol. 6342, pp. 634216-1~634216-7, 2006. [39] G. S. Cho, and Y. S. Kwon, “AlGaNGaAs lens-shaped LED with high efficiency and narrow pattern,” SPIE, Vol. 1813, pp. 142-153, 1992. [40] R. E. Hopkins, and R. Hanau, “Geometrical Optics,” Sinclair Optics, New York, pp. 2-1~2-4, 1987. [41] Joseph T. Verdeyen, “Laser Electronics,” Pearson Education, Third Edition, Taipei, pp. 20-47, 2003. [42] Á. Borbély, and S. G. Johnson, “Prediction of light extraction efficiency of LEDs by ray trace simulation,” Proc. SPIE, Vol. 5187, pp. 301-308, 2004. [43] V. Zabelin, D. A. Zakheim, and S. A. Gurevich, “Efficiency improvement of AlGaInN LEDs advanced by ray-tracing analysis,” IEEE Journal of Quantum Electronics, Vol. 40, pp. 1675-1685, 2004. [44] Warren J. Smith, “Modern optical Engineering,” Mgraw-Hill, Third Edition, New York, pp. 5-8 & 200-243, 2000. [45] 岸川利郎,”光学入門”,オプトロニクス社,日本, pp. 1-14, 1990。. [46] V. N. Mahajan, “Optical Imaging and Aberrations, Part Ι Ray Geometrical Optics,” SPIE Press, Washington, pp. 100-127, 1998. [47] F. Graham Smith, and Terry A. King, “Optical and Photonics : An Introduction,” John Wiely & Sons, England, pp. 103-107, 2000. [48] Á. Borbély, and S. G. Johnson, “Performance of phosphor coated LED optics in ray trace simulation,” Proc. SPIE, Vol. 5530, pp. 266-273, 2004. [49] S. J. Lee, “Light-emitting diode lamp design by Monte Carlo photo simulation,” Proc. SPIE, Vol. 4278, pp. 99-108, 2001. [50] B. A. Jacobcon, and R. D. Genelbach, “Lens for uniform LED illumilation:an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE, Vol. 4446, pp. 121-128, 2002. [51] F. Hu, K. Y. Qian, and Y. Luo, “Far-field pattern simulation of flip-chip bonded power light-emitting diodes by a Monte Carlo photon-tracing method,” Appl. Opt., Vol. 44, pp. 2768-2771, 2005. [52] Song Jae Lee, “Analysis of light-emitting diodes by Monte Carlo simulation”, Appl. Opt., Vol. 40, pp. 1427-1437, 2001. [53] Yoshi Ohno, “Optical metrology for LEDs solid state lighting,” Proc. SPIE, Vol. 6046, pp. 604625-1~604625-8, 2006. [54] TracePro, “TracePro Manual,” Lambda Research Corporation, Release 3.2.0, 2004.
摘要: 摘要 本論文主要研究動機是探討藍光發光二極體之發光光形與封裝後之取光效率,為了要能達到發光二極體發光光形之設計並能有效提升表面黏著型構裝之取光效率,因而利用透鏡之幾何外型形狀來破壞全反射,並且以透鏡與封裝膠材之折射率相互搭配使用,以降低Fresnel 損耗及全反射,進而達成提升封裝取光效率。 在實驗上首先依據實際量測藍光發光二極體晶粒之發光光形與光通量的資料來進行裸晶粒之光學模擬(即未封裝前),經由量測未封裝的發光二極體晶粒並與光學模擬結果進行比對,以驗證光學模擬的正確性。接下來再進行已表面黏著型發光二極體構裝之模擬,並與量測結果進行比對,以驗證光學模擬的正確性。最後進行發光二極體貼合透鏡之模擬,並與量測結果進行比對,以驗證光學模擬的正確性,經由這些一系列的驗證做為光學設計之參考依據。由實驗量測結果可知,當透鏡曲率半徑為3.358 mm 、透鏡高度為3.83 mm 、封裝膠材折射率為1.53及透鏡折射率為1.41時,其封裝取光效率可有效提升48%,藍光發光二極體發光光形則為84度之發光角。因此將此結果應用在發光二極體的封裝上,除可達到光形設計與提升封裝取光效率外,亦能達到降低成本之目的。
Abstract The motivation of this thesis is to investigate the beam pattern of the blue light-emitting diode (LED) and the light extraction efficiency of the surface-mount LED package. In order to modify the emission beam pattern of the blue LED as well as to improve the light extraction efficiency of the LED package, the total internal reflection from the LED chip has to be destroyed by a suitable geometric shape of the lens. The incorporation of various refractive indexes of the lenses with the index-match encapsulant materials is also expected to further reduce the Fresnel loss and internal reflection effect. First, the emission beam pattern and the flux from the blue LED chip without any encapsulant material were measured and compared with the the optical simulation result to confirm its validity. After that, the surface-mount blue LED with an encapsulant material were measured and compared with the optical simulation result to verify the accuracy of the optical simulation. The above procedure was followed by the simulation of the surface-mount LED integrated with an optical lens. A comparison between the measured and simulated results was made to re-verify the accuracy of the optical simulation. Therefore, the data derived from the above works can be used as reference data for the LED package design. Based on these studies, the light extraction efficiency of the blue LED package can be improved by 48% and the beam pattern can be modified into 84 degree using the following package design: a lens with radius of curvature (3.358 mm); the lens height (3.83 mm), the refractive index of encapsulant (1.53), and lens (1.41). A moderate design of the LED package is very important in modifying the beam pattern and in enhancing the light extraction efficiency.
URI: http://hdl.handle.net/11455/4149
其他識別: U0005-2408200721121000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200721121000
Appears in Collections:精密工程研究所

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.