Please use this identifier to cite or link to this item:
標題: 具高反射鏡面之金屬銅基板氮化鎵發光二極體之研製
Investigation of High-Brightness GaN Light-Emitting Diodes with Copper Substrate
作者: 嚴國瑋
Yen, Kuo-Wei
關鍵字: GaN
laser lift-off (LLO)
出版社: 精密工程學系所
引用: [1] N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, and T. Jimbo, “Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire,” Appl. Phys. Lett. 76, 1804 (2000). [2] T. C. Wen, S. J. Chang, L. W. Wu, Y.K. Su, W.C. Lai, C.H. Kuo, C.H. Chen, J.K. Sheu, and J.F. Chen, “InGaN/GaN Tunnel-Injection Blue Light-Emitting Diodes,” Electron Devices, IEEE Transactions 49,1093 (2002). [3] D. B. Eason, W. C. Hughes, J. Ren, M. Riegner, Z. Yu, J.W. Cook, J. F. Schetzina, G. Cantwell, and W.C. Harsch, “High-brightness green light-emitting diodes,” Electron. Lett. 30, 1178 (1994). [4] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “Ⅲ-V compound. semiconductor devices: Optical detectors,” Electron Devices, IEEE Transactions 31, 1643 (1984). [5] K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers,” Appl. Phys. Lett. 85, 4777 (2004). [6] H. Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett. 58, 1010 (1991). [7] H. Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-brightness InGaAlP green light-emitting diodes,” App. Phys. Lett. 61, 1752 (1992). [8] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE. 85, 1752 (1997). [9] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34, L1332 (1995). [10] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes, ”Appl. Phys. Lett. 64, 2839 (1994). [11] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, “High reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes,”Electron. Lett. 32, 132 (1996). [12] J. I. Pankove, and P. E. Norris, RCA (Radio Corporation of America) Review. 33, 377 (1972). [13] S. Yoshida, S. Misawa, and S. Gonda, “Epitaxial growth of GaN/AlN heterostructures,” Journal of Vacuum Science & Technology B. 1, 250 (1982). [14] M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano, and S. Sakai, “Study of Threading Dislocations in Wurtzite GaN Films Grown on Sapphire by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 37, L291 (1998). [15] E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M.E. Gaevski, V. Adivarahan, and M. A. Khan, “Room-temperature optically pumped laser emission from a-plane GaN with high optical gain characteristics,” Appl. Phys. Lett. 84, 2998 (2004). [16] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. New York: Wiley and Sons (2002). [17] S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes. London: Taylor and Francis (2000). [18] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers. Berlin: Springer (2000). [19] M. R. Krames, M. Ochinai-Holocomb, G. E. Hofler, C. C. Coman, E. I. Chen, I. –H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. –W. Huang, S. A. Stockman, F. A. Kish, and M. G. Carford, “High-power truncated-inverted-pyramid (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes exhibiting >50 external quantum efficiency,” Appl. Phys. Lett. vol. 75, 2365 (1999). [20] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Denbaars, S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. vol. 84, 855 (2004). [21]C. C. Kao, H. C. Kuo, Member, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light-output enhancement in a nitride-based light-emitting diode with 22° undercut sidewalls,” IEEE Photon. Technol. Lett. vol. 17, 19 (2005). [22] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. App. Phys. vol. 93, 9383 (2003). [23] J. Baur, B. Hahn, M. Fehrer, D. Eisert, W. Stein, A. Plossl, F. Kuhn, H. Zull, M. Winter, and V. Harle, “InGaN on SiC LEDs for High Flux and High Current Applications,” Phys. Stat. Sol. (a) vol. 194, 399 (2002). [24] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J.Ludowise,G. Christenson,b) Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. vol. 78, 3379 (2001). [25] T. Egawa, B. Zhang, and H. Ishikawa, “High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD,” IEEE. vol. 26, 169 (2005). [26] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三 版, 高立圖書有限公司, 台北, 台灣, pp. 104-206, 2000. [27] D. K. Schroder, Semiconductor Material and Device Characterization. New York, Wiley (1998). [28] V. M. Burmedez, “Study of oxygen chemisorption on the GaN(0001)-(1×1) surface,” J. Appl. Phys. vol. 80, 1190 (1996). [29] 史光國, “半導體發光二極體及固態照明,” 全華科技,台北,台灣, pp. 2.1-2.4 (2005) [30] Y. Xi and E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. vol. 85, 2163 (2004). [31] Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods,” Appl. Phys. Lett. vol. 86, 031907 (2005). [32] Lumileds, “Thermal Management Considerations for Super Flux LEDs,” Application Note, 1149-4. [33] S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high-power GaAlAs visible lasers,” J. Appl. Phys. vol. 58, 1124 (1985). [34] H. I. Abdelkader, H. H. Hausien, and J. D. Martin, “Temperature rise and thermal rise-time measurements of a semiconductor laser diode,” Rev. Sci. Instrum. vol. 63,2004 (1992). [35] S. Murata, and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a 50 µm spaced 8-beam laser diode array,” J. Appl. Phys. vol. 72, 2514 (1992). [36] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. vol. 62, 131 (1993). [37] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys. vol. 83, 3172 (1998). [38] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 74, 1275 (1999). [39] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. vol. 86, 4491 (1999). [40] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett. vol. 78, 3265 (2001). [41] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett. vol. 74, 3930 (1999). [42] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 79, 2925 (2001). [43] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu “High brightness InGaN green LEDs with an ITO on n/sup ++/-SPS upper contact,” IEEE. vol. 50, 2208 (2003). [44] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE. vol. 15, 646 (2003). [45] J. H. Son, H. W. Jang, and J. L. Lee, “Low-resistance and high-reflectance Ni/Ag/Ru/Ni/Au ohmic contact on p-type GaN,” Appl. Phys. Lett. vol. 85, 4421 (2004). [46] P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys. vol. 89, 1527 (2001). [47] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “Preparation GaN-based cross-sectional TEM specimens by laser lift-off,” Micron, vol. 36, 281 (2005). [48] M. V. Allmen and A. Blastter, “Laser-Beam Interactions with Materials: Physical Principles and Application”, Berlin, 2nd Springer Publisher (1995). [49] R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, “On the thermal decomposition of GaN in vacuum,” Phys. Stat. Sol. (a) vol. 26, 353 (1974). [50] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01 2) Al2O3 and (0001)Si 6H-SiC substrates,” J. Appl. Phys. vol. 76, 236 (1994). [51] M. E. Lin, B. N. Sverdlov, and H. Morkoc, “Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy,” Appl. Phys. Lett. vol. 63, 3625 (1993). [52] W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow and N. W. Cheung, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off,” J. Electronic Mater. vol. 28, 1409 (1999). [53] W. S. Wong, J. Kruger, Y. Cho, B. P. Linder, E. R. Weber, N. W. Cheung, and T. Sands, “Selective UV-laser processing for lift-off of GaN thin films from sapphire substrates,” in Proc. Symp. On Light Emitting Devices for Optoelectronic Applications and State-of—the-Art Program on Compound Semiconductors XXVIII. vol. 98-2, 377 (1998). [54] D. A. Stocker, I. D. Goepfert, E. F. Schubert, K. S. Boutros, and J. M. Redwing, “Crystallographic Wet Chemical Etching of p-Type GaN,” J. Electrochem. Soc. vol. 147 (2), 763 (2000). [55] A. Shintani, and S. Minagawa, “Etching of GaN Using Phosphoric Acid,” J. Electrochem. Soc. vol. 123 (5), 706 (1976). [56] J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. vol. 69, 503 (1996). [57] L. W. Tu, Y. C. Lee, S. J. Chen, I. Lo, D. Stocker and E. F. Schubert, “Yellow luminescence depth profiling on GaN epifilms using reactive ion etching,” Appl. Phys. Lett. vol. 73, 2802 (1998). [58] H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett. vol. 85, 5920 (2004). [59] D. L. Hibbard, S. P. Jung, C. Wang, D. Ullery, Y. S. Zhao, H. P. Lee, W. So and H. Liu, “Low resistance high reflectance contacts to p-GaN using oxidized Ni/Au and Al or Ag,” Appl. Phys. Lett. vol. 83, 311 (2003). [60] J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. vol. 88, 043507 (2006). [61] H. Kim, K. H. Baik, J. Cho, J. W. Lee, S. Yoon, H. Kim, S. N. Lee, C. Sone, Y. Park and T. Y. Seong, “High-Reflectance and Thermally Stable AgCu Alloy p-Type Reflectors for GaN-Based Light-Emitting Diodes,” IEEE Photonics Technol. Lett. vol. 19, 336 (2007). [62] V. Adivarahan, A. Lunev, M. A. Khan, J. Yang, G. Simin, M. S. Shur and R. Gaska, “Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p GaN for high-current devices,” Appl. Phys. Lett. vol. 78, 2781 (2001). [63] H. W. Jang, J. H. Son and J. L. Lee, “Highly reflective low resistance Ag-based Ohmic contacts on p-type GaN using Mg overlayer,” Appl. Phys. Lett. vol. 90, 012106 (2007). [64] J. Chastain and R. C. King, Jr., “Handbook of X-Ray Photoelectron Spectroscopy Physical Electronics,” MN (1995). [65] B. Vincent Crist, “The Elements and Native Oxides,” Handbook of Monochromatic XPS Spectra, Wiley, New York (2000). [66] S. S. Schad, T, M. Scherer, M. Seyboth, and V. Schwegler, “Extraction efficiency of GaN-based LEDs,” Phys. Stat. Sol. (a), vol. 188, 127 (2001).
摘要: 以氮化鎵發光二極體(LED)而言,磊晶薄膜因缺少晶格匹配的基板,通常成長在藍寶石基板上。但由於藍寶石基板導熱性不佳,當操作在高電流下,容易於接面處堆積大量的熱能而導致元件特性變差。為解決熱對發光體的影響,本論文將氮化鎵薄膜轉移至具有高電導率、高熱傳導率的金屬銅基板上。 論文主要利用高反射鏡面研製垂直導通型氮化鎵藍光LED,並探討元件特性及製程之可行性。論文進行方式使用雷射剝離技術來剝離藍寶石基板,搭配反射率達92 %的鎳/銀鏡面及精密電鍍技術,將剝離後的氮化鎵薄膜轉移至銅基板上,最後利用氫氧化鈉溶液粗化n型氮化鎵薄膜,製作p型在下的氮化鎵/鏡面/銅結構LED元件。將大面積( 1 mm×1 mm )垂直導通型之氮化鎵/鏡面/銅LED和傳統型氮化鎵/藍寶石基板結構作特性比較,其中順向偏壓在20 mA時分別為2.63 V及2.74 V,於電流350 mA時分別為3.88 V及3.94 V,在不同電流注入下,垂直型LED操作電壓較低是由於整面p型氮化鎵與金屬接觸和n型氮化鎵層之電流擴散所造成。在逆向偏壓-5 V時所量測到的漏電流分別為垂直型LED 90.2 nA及原始LED 47.8 nA,經由上述結果顯示此製程研究之可行性。 此外,在電流350 mA注入下氮化鎵/鏡面/銅結構經由粗化後的發光強度為傳統型藍寶石基板結構的4.3倍,之後隨著注入電流的增加至1 A,傳統型藍寶石基板之LED已先呈現飽和,而垂直導通型LED仍持續線性增加;注入350 mA電流後,垂直發光元件的電光轉換效率12%優於傳統型元件的7%,明顯地提高元件的效率;實驗亦發現元件在大電流(350 mA)注入後,具銅基板的發光元件介面溫度192oC相較於藍寶石基板元件的257oC降低了有65oC之多;顯示氮化鎵薄膜經由基板轉移至熱傳導係數極佳的金屬銅後,可以得到較佳的散熱機制,大電流操作下仍可維持良好的特性及穩定性。
In general, the structure of GaN light-emitting diode is commonly epitaxially grown on sapphire substrate. The large joule heat is generated from the active layer during high current injecting. That could degrade the performance of device because the low thermal conductivity of sapphire substrates. To solve this problem, GaN epilayer will be transferred to the copper substrate by electroplating. The copper substrate supplies high electrical conductivity and thermal conductivity. In this study, a vertical conductive type structure for GaN/mirror/Cu LED combined with laser lift-off (LLO), Ni/Ag mirror with high reflectivity (about 92%), and electroplating technique are demonstrated. The Ni/Ag was deposited on the p-GaN layer and then electroplated by copper substrate. Following, using NaOH solution roughens the n type GaN cladding layer after LLO. The epitaxy structure is separated by LLO from the sapphire substrate to fabricate p-side down device. The forward voltage (@20 mA) of the GaN/mirror/Cu LEDs and conventional LEDs are 2.63 V and 2.74 V, respectively. The forward voltage (@350 mA) of the GaN/mirror/Cu LEDs and conventional LEDs are 3.88 V and 3.94 V, respectively. From these results, the GaN/mirror/Cu LEDs decrease the series resistance in a vertical conductive structure due to the large-area metal being ohmic to p-GaN and n-GaN providing well current spreading. The leakage currents (@-5 V) of GaN/mirror/Cu and conventional LEDs are 90.2 nA and 47.8 nA, respectively. The luminance intensity of GaN/mirror/Cu LEDs with textured surface is better than that of conventional LEDs. It is about 4.6 times. With injection current to 1 A, the light output power of GaN/mirror/Cu LEDs could be linearly increased. It is due to the copper providing a good conductivity and heat sink.
其他識別: U0005-2608200711523900
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.