Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4158
標題: 磊晶粗化對高亮度發光二極體光粹取率之影響
Effects of Surface Roughening by Epitaxical Growth on Light Emitting Diodes for High Brightness Applications
作者: 陳宗良
Chen, Tsung-Liang
關鍵字: GaN
氮化鎵
Surface Roughening
磊晶粗化
出版社: 精密工程學系所
引用: 參考文獻 [1] S. Nakamura, T. Mukai, and M. Senoh, “ Candela-class high-brightness InGaN/GaN double-heterosturucture blue light-emitting diodes “, Appl. Phys. Lett. 64, 1687, 1994. [2] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “ High-brigghness InGaN blue, green and yellow light-emitting diodes with quantum well structures “, Jpn. J. Appl. Phys.34, L797, 1995. [3] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Markoc, G. Smith, M. Estes, B. Goldberg, W. Yank, and S. Krishnankutty, “ High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)- GaN(i)-GaN(n) structure ”, Appl. Phys. Lett. 71, 2154, 1997. [4] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “ Optical bandgap energy of wurtzite InN “, Appl. Phys. Lett. 81, 1246, 2002. [5] 史光國編著, 現代半導體發光及雷射二極體材料技術, 全華科技. [6] H. Wenisch, M. Fehrer, M. Klude, K.Ohkawa, D. Hommel, “ Internal photoluminescence in ZnSe homoepitaxy and application in blue-green-orange mixed-color light-emitting diodes “, Journal of Crystal Growth, 214, 1075, 2000. [7] T. S. Jen. N. F. Shin, L. H. Laih, Y. A. Chen, J. W. Hong, C. Y. Chang, “ Electrical and luminescent characteristics of a-SiC:H p-i-n thin-film LED’s with graded-gap junction “, IEEE Trans. Electron Devices, 44, 565, 1997. [8] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “ Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies “, J. Appl. Phys. 76, 1363, 1994. [9] S. Guha, J. M. Depuydt, M.A. Haase, J. Qiu, and H. Cheng, “ Overlayer strain: A key to directly tune the topography of high-index semiconductor surfaces “, Appl. Phys. Lett. 63, 3300, 1993. [10] E. F. Schubert, “ Light – Emitting Diodes “, Cambridge University Press, 2003. [11] B. G. Streetman, S. Banerjee, “SOLID STATE ELECTRONIC DEVICES 5/E ”, 2000 [12] M. Fukuda, “ OPTICAL SEMICONDUCTOR DEVICES “, 1998 [13] W. C. Lai, S. J. Chang, M. Yokoyam, J. K. Sheu, J. F. Chen, “ InGaN-AlInGaN multiquqntum-well LEDs “, IEEE Photon. Technol. Lett 13, 559, 2001. [14] J. K. Sheu, G. C. Chi, M. J. Jou, “ Enhance output power in an InGaN-GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer “, IEEE Photon. Technol. Lett 13, 1164, 2001. [15] S. J. Chang, S. C. Wei, Y. K. Su, Senior Member, IEEE, R. W. Chuang, S. M. Chen, W. L. Li, “ Nitride-based LEDs with MQW active regions grown by different temperature profiles “, IEEE Photon. Technol. Lett 17, 1806, 2005 [16] S. J. Chang, C. S. Chang, Y. K. Su, Senior Member, IEEE, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photon. Technol. Lett. 16, 1002, 2004. [17] S. J. Chang, C. S. Chang, Y. K. Su, Senior Member, IEEE, C. T. Lee, Senior Member, IEEE, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, “ Nitride-Based Flip-Chip ITO LEDs “, IEEE Trans. On Advanced Packaging, 28, 273, 2005. [18] B. S. Tan, S. Yuan, X. J. Kang, “ Performance enhancement of InGaN light-emitting diodes by laser lift-off and transfer from sapphire to copper substrate”, Appl. Phy. Lett. 84, 2757, 2004. [19] Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. T. Lee, T. C. Wen, L. W. Wu, C. H. Kuo, C. S. Chang, S. C. Shei, “ Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs”, Journal of Crystal Growth, 261, 466, 2004. [20] G. B. Stringfellow, “ Organometallic Vapor – Phase Epitaxy:Theory and Practice “, 1999. [21] J. I. Pankove, Theodore D. Moustakas, “ Gallium Nitride(GaN)“ [22] H. Amano, K. Hiramatsu, and I. Akasaki, “Heteroepitaxial Growth and the Effect of Strain on the Luminescent Properties of GaN Films on (11-20) and (0001) Sapphire Substrates “, Jpn. J. Appl. Phys. 28, L1384, 1988. [23] K. Iwata, H. Asahi, K. Asami, R. Kuroiwa, and S. Gonda, “Gas Source Molecular Beam Epitaxy Growth of GaN on C-, A-, R- and M-Plane Sapphire and Silica Glass Substrates”, Jpn. J. Appl. Phys. 36, L661, 1997. [24] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, Jounal of Crystal Growth 128, 391, 1993. [25] A. Sakai, A. Kimura, H. Sunakawa, and A. Usui, “Microstructure of GaN films on GaAs(1 0 0) substrates grown by hydride vapor-phase epitaxy “, Jounal of Crystal Growth 183, 49, 1998. [26] A. A. Yamaguchi, T. Manako, A. Sakai, H. Sunakawa, A. Kimura, M. Nido, and A. Usui, “Single Domain Hexagonal GaN Films on GaAs (100) Vicinal Substrates Grown by Hydride Vapor Phase Epitaxy “, Jpn. J. Appl. Phys. 35, L873, 1996. [27] J. Yamamoto, M. Kurimoto, M. Shibata, T. Honda, H. Kawanishi, “ Origin of cracks in GaN/AlGaN DH structure grown on 6H – SiC by metalorganic vapor phase epitaxy “, Journal of Crystal Growth, 189, 193, 1998. [28] V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, and O. K. Semchinova, “Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H–SiC “, J. Appl. Phys. 82, 5097, 1997. [29] 李世鴻 著, 積體電路製程技術, 五南圖書. [30] S. Haffouz, B. Beaumont, P. Gibart, “ Effect of Magnesium and Silicon on the lateral overgrowth of GaN patterned substrate by Metal Organic Vapor Phase Epitaxy “, MRS J. Nitride Semiconductor Res. 3, 8, 1998. [31] B. Beaumont, PH. Vennegues, P. Gibart, “ Epitaxial lateral overgrowth of GaN “, Phys. Stat. Sol. (b) 227, 1, 2001. [32] K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “ Recent progress in selective area growth and epitaxial lateral overgrowth of Ⅲ-nitrides: Effects of reactor pressure in MOVPE growth ”, Phys. Stal. Sol (a) 176, 535, 1999. [33] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO), Journal of Growth Crystal 221, 316, 2000. [34] 真空技術與應用, 行政院國家科學委員會精密儀器發展中心出版. [35] H. Xiao, “ Introduction to Semiconductor Manufacturing Technology, 2001. [36] 羅吉宗 編著, 薄膜科技與應用修訂版, 全華科技. [37] 汪建民 主編, “ 材料分析 “, 中國材料科學學會. [38] G. K. Reeves and H. B. Harrison, “ Obtaining the specific contact resistance from transmission line model measurement “, IEEE Electron Devices lett. 3, 111, 1982. [39] T. Wang, P. J. Parbrook, M. A. Whitehead, W. H. Fan, A. M. Fox, “ Study of stimulated emission from InGaN/GaN multiple quantum well structures”, Journal of Crystal Growth 273, 48, 2004. [40] J. H. Chen, Z. C. Feng, J. C. Wang, H. L. Tsai, J. R. Yang, A. Parekh, E. Armour, P. Faniano, “ Study of carrier localization in InGaN/GaN quantum well blue-light-emitting diode structure “, Journal of Crystal Growth 287, 354, 2006. [41] C. C. Teng, H. C. Wang, T. Y. Tang, Y. C. Lu, Y. C. Cheng, C. C. Yang, K. J. Ma, W. M. Wang, C. W. Hsu, L. C. Chen, “ Depth dependence of optical property beyond the critical thickness of an InGaN film “, Journal of Crystal Growth 288, 18, 2006. [42] J. P. Liu, G. D. Shen, J. J. Zhu, S. M. Zhang, D. S. Jiang, H. Yang, “ Structural and optical properties of violet InGaN/AlInGaN light-emitting diodes grown by MOCVD “, Journal of Crystal Growth 295, 7, 2006. [43] R. C. Tu, C. J. Tun, S. M. Pan, C. C. Chuo, J. K. Sheu, C. E. Tsai, T. C. Wang, G. C. Chi, “ Improvement of near-ultraviolet InGaN-GaN light-emitting diodes with an AlGaN electron-blocking layer grown at low temperature “, IEEE Photon. Technol. Lett 15, 1342, 2003. [44] J. S. Jang, D. Kim, T. Y. Seong, “ Low turn-on voltage and series resistance of polarization-induced InGaN-GaN LEDs by using p-InGaN/p-GaN superlattice “, IEEE Photon. Technol. Lett 18, 1536, 2006. [45] C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, S. J. Chang, and Y. K. Su, “ Enhanced output power in GaN-Based LEDs with naturally textured surface grown by MOCVD “, IEEE Electron Device, Lett. Vol. 26, 464, 2005. [46] Y. L. Tsai, J. R. Gong, “ Improvement in optical properties and surface morphologies of GaN films using low-temperature GaN interlayers “, Jounal of Crystal Growth 263, 176, 2004. [47] L.W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, J. K. Sheu, “ In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer “, Solid State Electronics 47, 2027, 2003. [48] H. W. Huang, C. C. Kao, J. T. Chu, H. C. Kuo, S. C. Wang, and C. C. Yu, “ Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened p-GaN surface “, IEEE Photon. Technol. Lett. Vol. 17, 983, 2005. [49] K. Pakula, R. Bozek, K. Surowiecka, R. Stepniewski, A. Wysmolek, J.M. Baranowski, “ Growth of low-density GaN quantum dots on AlxGa1-xN “, Journal of Crystal Growth 289, 472, 2006. [50] A. Matsuse, N. Grandjean, B. Damilano, J. Massies, “Surface morphology of AlN and size dispersion of GaN quantum dots “, Journal of Crystal Growth 274, 387, 2005.
摘要: 摘要 此篇論文主要在探討不同磊晶粗化對光粹取率之影響,並且使用光學顯微鏡與掃描式電子顯微鏡來分析發光二極體外觀形貌,利用電激發光光譜儀與積分球來量測光電特性。 發光二極體發光效率為內部量子效率與光粹取率的乘積,基於這個理由,當要增加光強度時光粹取率扮演著相當重要的角色,為了增加光粹取率,我們測試不同方式使發光二極體表面形成粗化,粗化方式分別在發光二極體表面形成凹洞與島狀顆粒,藉由此一方式在發光二極體表面形成粗化。 在實驗結果指出,島狀顆粒的粗化可得到較佳之光粹取率,其光粹取效率可達 84.3 %,約比沒有粗化之發光二極體提升了 48 % 左右,但是島狀顆粒順向操作電壓為 3.39 V,而未粗化與凹洞的粗化為 3.28 V 與 3.19 V,所以島狀顆粒順向操作電壓較未粗化與凹洞的粗化來的高。另外在島狀顆粒的粗化我們使用不同溫度與壓力來做測試,在溫度部分,我們以島狀顆粒粗化之成長溫度 1000 ℃ 為基準,分別使用 900 ℃ 與 1100 ℃ 作磊晶成長,其光粹取率分別為 74.21 % 與 59.08 %,兩者皆使光粹取率變差。 在壓力部分,同樣以島狀顆粒粗化之成長壓力 250 torr 為基準,分別使用 100 torr 與 400 torr 作磊晶成長,其光粹取率分別為81.04 % 與 87.17 %,在成長壓力為 400 torr 成長時所形成的粗化表面可得到最佳的光粹取率,約比成長壓力為 250 torr 之光粹取率提升了 3.4 % 左右。
Abstract In this investigation, we studied the effect of surface roughing on light extraction efficiency. The electrical and optical properties were characterized by electroluminescence and surface morphology measured by microscope and Scanning Electron Microscope. In order to improve the light extraction efficiency, we tried to implement various growth conditions of P-type GaN layers to create surface roughing, such as pits-like and island-like surface. Experiment results indicated that the island-like surface had better light extraction efficiency. The light extraction efficiency was 84.3 % in island-like LED surface, and the light extraction efficiency increased 48 % as compared with that of non-surface roughing LEDs. But the forward driving voltage of island-like surface LED was 3.39V, and the forward driving voltage of non-surface roughing and pits-like surface LEDs were 3.28 V and 3.19 V. The forward driving voltage was higher than non-surface roughing and pits-like surface. In this investigation, we implemented various parameters on growth temperature and pressure in order to create island-like surface. Base on 1000 ℃ growth temperature for island-like surface, we implemented 900 ℃ and 1100 ℃ for P-type growth individually. The light extraction efficiency were 74.21 % and 59.08 %. Experiment result indicated that the light extraction efficiency decayed both respected to 900 ℃ or 1100 ℃. On the other hand, we changed growth pressure from 250 torr to 100 torr and 400 torr for p-type growth individually. The light extraction efficiency were 81.04 % and 87.17 %. Experiment result indicated that island-like growth pressure in 400 torr had best light extraction efficiency. The light extraction efficiency increased 3.4 % compared to island-like growth pressure in 250 torr.
URI: http://hdl.handle.net/11455/4158
其他識別: U0005-2708200710353500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708200710353500
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.