Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4163
DC FieldValueLanguage
dc.contributor屈岳陵zh_TW
dc.contributor莊至順zh_TW
dc.contributor洪瑞華zh_TW
dc.contributor.advisor武東星zh_TW
dc.contributor.author葉家禎zh_TW
dc.contributor.authorYeh, Chia-Chenen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:27:09Z-
dc.date.available2014-06-06T06:27:09Z-
dc.identifierU0005-2808200715311100zh_TW
dc.identifier.citation[1] A. Asai, E. Hara, and I. Endo, “One-Dimenesional model of bubble growth and liquid flow in bubble jet printers,” Jpn. J. Appl. Phys., vol. 26, pp. 1794-1801, 1987 [2] R. R. Allen, J. D. Meyer, and W. R. Knight, “Thermodynamics and hydrodynaics of thermal ink jet,“ HP Journal, vol. 36, pp. 21-27, 1985 [3] A. Asai, “Bubble dynamics in boiling under high heat flux pulse heating,” ASME J. Heat Transfer, vol. 113, pp. 973-979, 1991 [4] A. Asai, “Application of the nucleation theory to the design of bubble jet printer,” Jpn. J. Appl. Phys, vol. 28, pp. 909-915, 1989 [5] H. C. Lee, “Drop formation in a liquid jet,” J. IBM. Res. Dev, vol. 18, pp. 364-369, 1974 [6] F. G. Tseng, C. J. Kim and C. M. Ho, “A microinjector free of satellite drops and characterization of the ejected droplets,” J. Micro-Electro-Mechanical Systems, vol. 66, pp. 89-95, 1998. [7] J. Heinzl and C. H. Hertz, “Ink-Jet printing,” Adv. Electron. Electron phys., vol. 65, pp. 91-171, 1985 [8] H. B. Jaime, P. C. Brian, J. C. Kenneth, D. Frank, A. E. Corrina, L. H. Clayton, R. S. Aneesa, and E. S. Michele, “Laser-Comparable inkjet text printing,” HP Journal, vol. 45, pp. 9-17, 1994 [9] J. D. Beasley, “Model for fluid ejection and refill in an impulse drive jet,” Photogr. Sci. Eng., vol. 21, pp. 78-82, 1977 [10] L .P. Hue, “Progress and trend in ink-jet printing technology,” J. Imag. Sci. Technol., vol. 42, pp. 49-62, 1998. [11] S .F. Pond, “Inkjet technology and product development strategies,” Torrey Pines, USA, 2000. [12] R. A. Myers and J. C. Tamulis, “Introduce to topical issue on non-impact printing technologies,” J. IBM. Res. Dev., vol. 28, pp. 234-240, 1984. [13] P .H. Chen, W. C. Chen and S. H. Chang, “Bubble growth and ink ejection process of a thermal ink jet print-head,” Int. J. Mech. Sci, vol. 39, pp. 683-695, 1997. [14] F. G. Tseng, C. J. Kim and C. M. Ho, “A novel microinjector with virtual chamber,” IEEE. Micro-Electro-Mechanical Systems, vol. 8, pp. 57-62, 1998. [15] 陳星嘉, “利用CPLD之印表機噴墨控制器設計與實作,” 國立清華大學動力機械工程學系碩士論文, 1997 [16] 林全財, 鄭旺泉, “CPLD數位邏輯設計,” 台科大圖書有限公司出版, 2003 [17] 鄭信源, “VHDL硬體描述語言數位電路設計實務,” 儒林圖書有限公司出版, 2006 [18] 茂綸股份有限公司., MAX II Starter kit 使用說明書zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4163-
dc.description.abstract本論文提出評估噴墨品質與驅動信號關係的一種方法,此方法是利用兩個實驗所組成,分別為墨滴重量測量實驗與墨滴軌跡觀察實驗。在墨滴重量測量方面,我們發現噴墨頭擊發的墨滴大小會因為觸發電壓與噴墨頻率的不同而有所改變,墨滴的大小直接影響到噴墨品質,在本實驗中利用複雜可程式化邏輯元件(Complex Programmable Logic Device),搭配噴墨頭驅動電路獨立控制墨頭HP-27,在不同觸發電壓與噴墨頻率下噴墨,量取被擊發的墨滴重量,來瞭解墨滴大小與觸發電壓,噴墨頻率之間的關係。在墨滴軌跡觀察實驗方面,一般來說,噴墨頭操作在適當的頻率與觸發電壓下,其被擊發的墨滴是穩定且相同的,但是若噴墨頭操作在過高的頻率下或不適當的觸發電壓下,會有噴墨不穩定現象,影響噴墨品質,故本實驗目的為找出噴墨頭在不同觸發電壓與噴墨頻率下的穩定噴墨區。 本論文所使用的墨水為墨水表面張力為56.5 x10-3 N/m,黏度為1.8 CPS,pH值為7.65,經由實驗結果顯示,墨滴重量會隨著噴墨頻率的增加而有先上升後下降的趨勢,當噴墨頻率超過臨界頻率時,會有多餘的墨點產生,為不穩定噴墨情形。而當觸發電壓為11 V,噴墨頻率低於14 kHz時;觸發電壓為12 V,噴墨頻率低於15 kHz時;觸發電壓為13 V,噴墨頻率低於17 kHz時;觸發電壓為14 V,噴墨頻率低於18 kHz時,在紙面上的墨點穩定地重現無多餘墨點,為穩定噴墨區。當觸發電壓為13 V,噴墨頻率低於18 kHz時,此時觸發電壓供給加熱器的能量最為適當,其氣泡拉斷墨滴所耗費時間較短因而不產生衛星點。zh_TW
dc.description.abstractThis thesis proposes a technique to evaluate the relationship between ink-jet printing quality and the driving signal based on two kinds of experiments: observation of the ink trajectory and measurement of the ink droplet weight. Different trigger voltages and firing frequencies have large effects on the droplet size ejected from the printhead and thus directly affect the printing quality. In the hardware design, a complex programmable logic device (CPLD) integrated with a driving circuit was used to control the trigger voltage and firing frequency for an HP-27 printhead. The ejected droplet weight was investigated in term of the relationship between the droplet size and driving voltage/frequency. It was found that the excessive frequency or inappropriate voltage will lead to an unstable ejecting phenomenon and degrade the printing quality. We have tried to find the operation range (i.e. driving voltage and frequency) to ensure a stable working condition for the inkjet printhead. The ink used in this research possesses surface tension of 56.5en_US
dc.description.tableofcontents摘要 I Abstract II 目錄 III 圖表目次 V 第一章 緒論 1 1.1 研究動機與背景 1 1.2 文獻回顧 2 1.3 本論文架構 5 第二章 噴墨行為分析 6 2.1 噴墨技術概述 6 2.2 熱泡式噴頭構造 8 2.3 噴墨現象 9 第三章 CPLD架構 10 3.1 可程式邏輯元件 10 3.2 SPLD、FPGA與CPLD之比較 11 3.3 CPLD控制器 13 第四章 實驗規劃 15 4.1 墨滴重量測量實驗 15 4.2 墨滴軌跡觀察實驗 17 第五章 實驗參數與結果說明 20 5.1 實驗參數 20 5.2 實驗結果與說明 20 第六章 結論 23 6.1 論文總結 23 6.2 本文貢獻 24 6.3 未來展望 24 參考文獻 25 附錄 CPLD code 67zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200715311100en_US
dc.subjectprinting qualityen_US
dc.subject噴墨品質zh_TW
dc.subjecttrigger voltageen_US
dc.subjectfiring frequencyen_US
dc.subjectCPLDen_US
dc.subject觸發電壓zh_TW
dc.subject噴墨頻率zh_TW
dc.subject複雜可程式化邏輯元件zh_TW
dc.title使用CPLD控制器進行驅動電壓與操作頻率對噴墨列印之影響研究zh_TW
dc.titleEffects of firing frequency and trigger voltage on inkjet printing performance using a CPLD control circuiten_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.