Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4165
標題: 熱泡式噴墨流道設計對於噴墨頻率暨墨滴速度之影響
The influence of flow channel design on inkjet frequency & droplet velocity
作者: 黃俊圍
Huang, Chun-Wei
關鍵字: thermo-bubble ink jet
熱泡式噴墨
ink refill
liquid surface oscillation
micro flow channel
墨水回填
液面震盪
微流道
出版社: 精密工程學系所
引用: [1] http://www.iek.itri.org.tw/Home/Home.aspx [2] Myers R. A., Tamulis J. C., ”Introduce to Topical Issue on Non-Impact Printing Technologies,” IBM Journal of Research and Development, vol.28, pp.234-240, 1984. [3] Marlelne M., ”Continuous Improvement: Performance and Reliability in Shear Mode Piezo Ink Jet Printing,” Spectra Inc.www.spectra-inc.com [4] Fang. G. T., Chung J. K., Chou M. H., ” A Novel Microinjector With VIRTUAL CHAMBER NECK”, 11th IEEE workshop on MEMS, Heidelberg, Germany, Jan. pp. 25-29, 1998. [5] Asai A., Hara T., and Endo I., ”One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers,”Jpn. J. Appl. Phys., vol. 26, pp. 1794-1801, 1987. [6] Asai A., “Application of the Nucleation Theory to the Design of Bubble Jet Printers,”Jpn. J. Appl. Phys., vol. 28, pp. 909-915, 1989. [7] Runge W., “Nucleation in Thermal Ink-Jet Printers,” in IS&T’s 8th Int. Cong on Adv. In Non-Impact Printing Technol, pp. 299-302, The society of IS&T., Virginia, 1992. [8] Lee H. C., “Drop Formation in a Liquid Jet,” IBM J. Res. Develop., pp. 364-369, 1974. [9] Pimbley W. T., “Drop Formation from a Liquid Jet: A Linear One-dimensional Analysis Considered as a Boundary Value Problem,” IBM J. Res. Develop, Vol. 20, 1976, pp. 148- 156. [10] Hilbing J. H., and Heister S. D., “Droplet Size Control in Liquid Jet Breakup ,” Phys. Fluids, vol. 8, pp. 1574-1581, 1996. [11] Athavale M. M., Yang H. Q., Przekwas A. J., “Coupled Fluid-Thermal-Structural Simulations In Microvalves And Microchannels,” Technical Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems MSM 99, 1999. [12] 張昱翔, 錢景常, 林光華, 許惠婷, 曾繁根, “表面張力之可拋式微流體生醫檢測晶片”, 2002奈米工程暨微系統技術研討會/國科會微機電系統成果發表會. [13] Kim C. J., “MEMS DEVICES BASED ON THE USE OF SURFACE TENSION,” Proc. Int. Semiconductor Device Research Symposium (ISDRS''99), 1999. [14] Kim D. S., Lee K. C., Kwon T. H., Lee S. S., ”Transient Filling Flow into Microchannels Considering Surface Tension,” The fifth international conference on MSM, 2002. [15] 趙修武、施冠丞、許坤霖,微管道系統內流體流動現象之數值模擬,國立臺灣大學「台大工程」學刊,第八十六期,2002. [16] Yang L. J., Yao T. J., Huang Y. L., Xu Y., Tai Y. C., “MARCHING VELOCITY OF CAPILLARY MENISCUSES IN MICROCHANNELS,” Proceeding of the 15TH IEEE MEMS, 2002, pp. 93-96. [17] Jaime H. B., Brian P. C., Kenneth J. C., Frank D., Corrina A. E., Clayton L. H., Aneesa R. S., and Michele E. S., “Laser-Comparable Inkjet Text Printing”, Hewlett-Packard Journal,pp.9-17, February 1994. [18] Moritz J. G., Trueba K., Knight W., “TUNED ENTRANCE FANG CONFIGURATION FOR INK-JET PRINTERS”,United States Patent 5519423, Jul. 8, 1994. [19] Saitoh K., “A Simple Model of Ink Refill Motion In Inkjet Printing,” IS&T’s Seventh International Congress on Advances in Non-Impact Printing Technologies, vol. 2, pp. 120-129, 1991.
摘要: 本論文以Lexmark L70市售熱泡式墨匣流道設計(C型流道)為比較基礎,與其他四組不同幾何形狀設計之供墨流道進行噴墨結果的分析比較。實驗選擇流道長度大於以及小於市售C型流道(96μm & 50μm )以及相異頸口寬度(35μm & 30μm )兩項幾何變數進行研究,目的在探討流道幾何設計對於熱泡式噴墨中流道供墨速度、噴口液面震盪、墨滴成型重量以及墨滴飛行速度等噴墨行為之影響。 噴墨行為的分析實驗以CFDRC有限元素分析軟體模擬流體在噴墨頭內因表面張力驅動而產生的墨水回填補充現象,並以此求得墨水填充各墨水腔的填充時間。接著以4.5倍光學顯微鏡頭配合高速CCD攝影機架設一組微墨滴觀測系統,實際觀測五組相異流道設計的噴墨頭在不同操作頻率下其墨滴成型過程以及墨滴飛行速度的變化。實驗最後以一組精密度為0.01mg的精密天平量測各不同操作頻率下墨水體積的變化量,藉以推測出墨水於噴口處震盪的圖形。 分析以上實驗數據結果得知較長流道(96 μm)的設計與市售墨水匣(70 μm)設計相比之下能提供較穩定的液面震盪,使得噴口處液面振幅減少8.7%,另外較窄的流道頸口(25 μm)能提供較佳的能量效率但可能造成墨水填充不完全現象。綜合以上結果能得知流道長度96μm 、頸口寬度35μm的L1流道幾何設計為本次實驗最佳的條件。其可提昇墨滴飛行速度(+55%)。
In this thesis, the effect of four different-types geometry design of ink-supply flow channel on ink supply speed, ink surface oscillation at nozzle and the velocity of droplet were investigated. The fluid flow process driven by the capillary force in different types of flow channel was simulated. The result of flow rate can be used to calculate the refilling time. Furthermore, we use a microscope with 4.5 time magnitude and high speed CCD camera to setup a system to observe the ink drop forming process and the velocity of droplet. Meanwhile, measuring the ink volume variation to derive the ink surface oscillation at nozzle. Finally, combining the results of simulation with the experiment data, it can be concluded that longer flow channel design provides stable ink surface oscillation that 8.7% surface oscillation height can be reduced and faster ink droplet velocity (55% increased). On the other hand, narrower flow channel neck provides better energy efficiency but may cause the phenomenon of incomplete ink refill. Finally, the optimium flow channel design can be achieved by summing up the results is 96μm flow channel length and 35μm neck width that can increase droplet flying speed about 55%.
URI: http://hdl.handle.net/11455/4165
其他識別: U0005-2908200712170500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908200712170500
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.