Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4169
標題: 成長於藍寶石之氮化鎵磊晶結構與矽晶圓共晶鍵合之技術開發
Development of silicon wafer bonding for GaN/sapphire epi-structure via a eutectic technique
作者: 吳茗樟
Wu, Ming-Jang
關鍵字: light-emitting diode
發光二極體
sapphire
silicon
eutectic
wafer bonding
藍寶石

共晶
晶圓鍵合
出版社: 精密工程學系所
引用: [1]A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, I. Adesida, “DC and microwave performance of high-current AlGaN/GaN heterostructure field effect transistors grown on p-type SiC substrates”, IEEE Electron Device Letters, Vol. 19, No. 2, 54-56, 1998. [2]Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In,Ga)N light-emitting diode performance by laser lift off and transfer from sapphire to silicon”, IEEE Photonic Technology Letters, Vol. 14, No. 10, 1400-1402, 2002. [3]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., 84, 855, 2004. [4]時定康、王智祥、林浩雄,“氮砷化銦量子井特性研究及其應用”,物理雙月刊,23卷6期,民國90年12月. [5]彭顯智,“不同旋轉角度之砷化鎵晶圓鍵合”,國立交通大學,碩士論文,民國93年7月. [6]盧昶鳴,“藉由晶圓鍵合和雷射剝離技術的搭配將氮化銦鎵薄膜整合在銅或矽基板上”,國立交通大學,碩士論文,民國91年6月. [7]劉柏均,“三五族化合物半導體晶圓鍵合之基本研究及應用”,國立交通大學,博士論文,民國94年7月. [8]李天鍚等編著,“晶圓鍵合技術及其應用”,工業材料雜誌,170期,146-157頁,民國90年2月. [9]T. Suga, M. M. R. Howlader, and T. Itoh, “A new wafer-bonder of ultra-high precision using surface activated bonding (SAB) concept”, Electronic Components and Technology Conference, 2001. [10]R. W. Hoffman, “Physics of Nonmetallic Thin Films”, eds. C. H. S. Dupuy and A. Cachard, Plenum Press: New York, 273, 1976. [11]K. L. Chopra, “Thin Film Phenomena”, McGraw-Hill: New York, 1969. [12]田春林,“光學薄膜應力與熱膨脹係數量測之研究”,國立中央大學,博士論文,民國89年5 月. [13]G. G. Stoney, “The tension of metallic films deposited by electrolysis”, Proc. R. Soc. London Ser., A82, 172-175, 1909. [14]D. S. Campbell, “Mechanical Properties of Thin Films”, in Handbook of Thin Film Technology, eds. L. I. Maissel, and R. Glang, McGraw-Hill: New York, 1970. [15]M. Ohring, “The Materials Science of Thin film”, Academic Press, 419, 2002. [16]C. J. Kim, “Polynomial fit of interferograms”, Appl. Opt., 21, 4521-4525, 1982. [17]W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates”, Appl. Phys. Lett., 72, 599-601, 1998. [18]黃國興、廖仕傑、張均豪,“次世紀光源製造及設備技術介紹”,機械工業雜誌,270期,101-120頁,民國94年9月. [19]W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow, and N. W. Cheung, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off”, Journal of El. Mat., Vol. 28, No. 12, 1409-1413, 1999. [20]W. Brantley, “Calculated Elastic Constants for Stress Problems Associated with Semiconductor Devices”, J. Appl. Phys., 44, 534-535, 1973. [21]張家銘,“雷射模組構裝中錫鉛及錫金銲點之研究”,國立中山大學,碩士論文,民國91年6月. [22]羅吉宗編著,“薄膜科技與應用”,全華科技圖書,9-12頁,民國94年12月. [23]W. S. Wong, Y. Cho, E. R. Weber, T. Sands, K. M. Yu, J. Kruger, A. B. Wengrow, and N. W. Cheung, “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift off”, Appl. Phys. Lett., 75, 1887-1889, 1999. [24]洪瑞華、武東星、黃少華,“利用晶片黏貼技術製作垂直型AlGaInP/mirror/barrier/Si發光二極體”,真空科技,17卷2期,27-33頁. [25]楊於錚,“準分子雷射剝離技術應用於具鍍鎳金屬基板高功率垂直結構GaN基LEDs之研究”,國立成功大學,碩士論文,民國94年6月. [26]周政翰,“薄膜應力之有限元素分析與評估”,國立成功大學,碩士論文,民國95年1月. [27]徐志偉,“利用晶圓接合與電鍍技術製作高功率氮化銦鎵族發光二極體”,國立交通大學,碩士論文,民國95年7月.
摘要: 發光二極體的發光效率與基板的散熱效果兩者習習相關,近來,許多在發光二極體結構研究嘗試由晶圓鍵合與雷射剝離過程應用高熱傳導材料。晶圓鍵合是指將兩晶圓接合後,藉由外加能量使接合界面的原子產生反應形成共價鍵而結合成一體,並使接合介面達到一定的鍵合強度。晶圓鍵合技術最吸引人之處是在於創作出各種複合式不同材質的基板,但是異質材料的熱膨脹係數所造成的熱應力,卻使得該晶圓出現翹曲,將增加後續製程限制,有效降低變形量為此研究方向。 目前應用在晶圓鍵合上的金屬材料眾多,如:金、錫、矽、銅等,本研究重點為採用藍寶石基板與(100)平面及(111)平面的矽晶圓,在晶圓表面先蒸鍍一層金-錫合金(80:20)的金層薄膜,再將藍寶石基板與矽晶圓在共晶溫度280℃及一定壓力下完成晶圓鍵合,並探討晶圓彎曲與材料的關聯性。在實驗中以藍寶石基板厚度為291 μm與矽晶圓厚度為439 μm鍵合後,所測量得之變形量237 μm為本實驗組中最小值,其雷射剝離良率可高達98.12% 。另外,晶圓鍵合後變形量在300 μm以下,且氮化鎵磊晶層為有切割道製程,無造成晶圓破裂等異狀時,雷射剝離良率皆有95%以上。
The luminous efficiency of LED is depended on the heat dissipation properties of wafer substrate. Recently, many researches try to apply highly thermal conductivity wafer material on LED structure by wafer bonding and laser lift-off process. Wafer bonding is considered as jointing and bonding two different wafers tightly by external force where the atoms of interface could react and form the valance band. The joint interface will achieve certain linkage intensity. The most interesting part of the wafer bonding technology is making various substrates of different compound materials become feasible. Never the less, the thermal stress resulting from the different thermal expansion of heterogeneous material will cause the wafer to warp, which increases the limitation of the process afterwards. What we discuss in the study is to reduce the curvature effectively. Currently, there are many materials used for wafer bonding, for example: Gold, tin, silicon, copper and so on. In this study, we have chosen sapphire substrate,(100)plane and(111)plane silicon wafer where the wafer surface was coated with the alloy of gold – tin(80:20). After that, the sapphire substrate and the silicon wafer were bonded under certain pressure at the eutectic temperature of 280℃. Then we discuss the relationship of wafer and different materials. We obtained the optimized curvature 237 μm and the best laser lift-off yield 98.13% at the condition when the sapphire substrate with thickness 291 μm and the silicon wafer with 439 μm were bonded in this test. Besides, the laser lift-off yield was above 95% when the curvature was below 300 μm with the isolation process for GaN epi-layers, and no there is no break phenomenon.
URI: http://hdl.handle.net/11455/4169
其他識別: U0005-0201200900083400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0201200900083400
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.