Please use this identifier to cite or link to this item:
標題: 二氧化鈦奈米管製備與染料敏化太陽能電池之應用
Fabrication of TiO2 Nanotubes and Application in Dye Sensitized Solar Cells
作者: 陳威廷
Chen, Wei-Ting
關鍵字: Titanium oxide
Thin film
Anodic oxidation
出版社: 精密工程學系所
引用: [1] K. O. Ott, “Global warming and the greenhouse effect,” Progress in Nuclear Energy, 29(1995)81. [2] Karl, Science, 302(2003)1719-1723. [3] L. L. Kazmerski, “Photovoltaics: a review of cell and module technologies,” Renewable and Sustainable Energy Reviews, 1(1991)71. [4] E Bequerel, “Recherches sur les effects de la radiation chimique de la lumière solaire, au moyen des.courants électriques, ” C.R. Acad. Sci., 9(1839)145. [5] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” AIP, 261(1976)402. [6] A. Hagfeldt, B. Dibriksson, T. Palmqvist, H. Lindstrom, S. Sodergren, H. Rensmo, and S. E. Lindquist, “Verification of high efficiencies for the Grätzel-cell a 7% efficient solar cell based on dye-sensitized colloidal TiO2 films,” Sol. Energy Mater. Sol. Cells, 31(1994) 481. [7] W. West, “First hundred years of spectral sensitization,” Proc. Vogel Cent. Symp. Photogr. Sci. Eng., 18(1974)35. [8] D. R. Kearns, R. A. Hollins, A. U. Khan, R. W. Chambers, and P. Radlick, “Evidence for the participation of 1.SIGMA.g + and 1.DELTA.g oxygen in dye-sensitized photo oxygenation reactions.Ⅰ,” J. Am. Chem. Soc., 89(1967)5455. [9] O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, (1991) 737. [10] 萬海保,曹立新,王麗穎,曾廣賦,席時權, “染料敏化的TiO2納米晶多孔膜的性質及其光電轉換”,化學通報, 6(1999). [11] H. Tsubomura, Y. Nomura, and T. Amamiya, “Dye sensitized zinc oxide/ aqueous electrolyte/platinum photocell,” Nature 261, (1976)402. [12] M. Grätzel, “A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films,” Nature 353, (1991)737-740. [13] N. Park, G. L., and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B, 104(2000)8989-8994. [14] C. L. Huisman, A. G., and J. Schoonman, “Aerosol synthesis of anatase titanium dioxide nanoparticles for hybrid solar cells,” Chem. Mater, 15(2003)4617-4624. [15] S. Burnside, K. Brooks, and M. Grätzel, “Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: Increasing photovoltage through flat band potential engineering,” J. Phys. Chem. B, 103(1999) 9328-9332. [16] N.-G. Park, J. L., A. J. Frank, H. M. Cheong, and A. Mascarenhas, “Dye- sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B, 103(1999)3308-3314. [17] F. Wang et al., “Highly efficient dye-sensitized solar cells with a Titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "Oriented Attachment" mechanism,” J. Am.Chem. Soc., 126 (2004)14943-14949. [18] S. Yanagida, “Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells, 83(2004) 113. [19] S. K. Deb, “Dye-sensitized TiO2 thin-film solar cell research at the National Renewable Energy Laboratory (NREL),” Sol. Energy Mater. Sol. Cells, 88(2005) 1-10. [20] M. Zukalova, A. Z., L. Kavan, M. K. Nazeeruddin, P. Liska, and M. Grätzel, “Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells,” Nano. Lett. 5, (2005)1789-1792. [21] M. Y. Song, D. K. K., S. M. Jo, and D. Y. Kim, “Enhancement of the photocurrent generation in dye-sensitized solar cell based on electro spun TiO2 electrode by surface treatment,” Synth. Met., 155(2005)635-638. [22] M. K. Nazeeruddin, A. K., I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2,2''-bipyridyl-4,4''-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” J. Am. Chem. Soc., 115(1993) 6382-6390. [23] M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells,” Curr. Opin. Colloid Interface Sci., 4(1999)314-321. [24] K. Hara, T. H., T. Kinoshita, K. Sayama, H. Sugihara, H. Arakawa, “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells, 64(2000)115-134. [25] T. Kawashima, T. E., K. Okada, H. Matsui, K. Goto, and N. Tanabe, “FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells,” J. Photochem. Photobiol. A-Chem, 164(2004)199-202. [26] T. Kawashima, H. M., and N. Tanabe, “New transparent conductive films: FTO coated ITO,” Thin Solid Films, 44(2003)241-244. [27] S. Ito, T. T., T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and transparent multilayer films for low-temperature -sintered mesoporous TiO2 electrodes of dye-sensitized solar cells,” Chem. Mat., 15 (2003)2824-2828. [28] J.-G. Doh, J. S. H., R. Vittal, M. G. Kang, N.-G. Park, and K.-J. Kim, “Enhancement of photocurrent and photovoltage of dye-sensitized solar cells with TiO2 film deposited on Indium Zinc oxide substrate,” Chem. Mat., 16(2004)493-497. [29] H. Lindstrom, A. H., E. Magnusson, S.-E. Lindquist, L. Malmqvist, and A. Hagfeldt, “A new method for manufacturing nanostructured electrodes on plastic substrates,” Nano. Lett 1, (2001)97-100. [30] C. Longo, A. F. N., M.-A. De Paoli, and H. Cachet, “Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy,” J. Phys. Chem. B, 106(2002)5925-5930. [31] D. Gutierrez-Tauste, I. Z., E. Vigil, and M. Hernandez-Fenollosa, “A new low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation,” J. Photochem. Photobiol. A-Chem, 175(2005)165-171. [32] D. Cahen, G. Hodes, M. Grätzel, J. F. Gauillemoles, and I. Riess, “Nature of photovoltaic action in dye-sensitized solar cells,” J. Phys. Chem. B, 104(2000)2053 [33] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, “Investigation of sensitizer adsorption and influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” J. Phys. Chem. B, 107(2003) 8981. [34] C. Klein, MD. KNazeeruddin, D. Di Censo, P. Liska, and M. Grätzel, “Amphiphilic ruthenium sensitizers and their application in dye-sensitized solars cells,” Ingro. Chem., 43(2004) 4216. [35] Michael Grätzel, “Photoelectrochemical cells,” Nature 414, (2001)338. [36] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wade, and S. Yanagida, “Role of electrolytes on charge recombination in dye-sensitized TiO2 solars cell(1) : The case of solar cells using the I-/ I3- redox couple,”J.Phys.Chem.B, 109(2005)3480. [37] W.-J. Lee, A. Wakahara, A. Yoshida, “Structural and photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin-Y”, Ceram. Int 32, (2006) 495-498. [38] K. Kakiuchi, S. Fujihara, “Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719,” J. Photochem. Photobiol. A-Chem, 179(2006) 83-86. [39] K. Funabiki, Ji-Ye Jin, T. Yoshida, H. Minoura, “Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell”, Synth. Met., 148(2005)147-153. [40] J. E. Kroeze, “The application of a low-bandgap conjugated oligomer for the sensitization of SnO2 and TiO2”, Thin Solid Films, 451(2003) 54-59. [41] M. A. Aegerter, “Sol-gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis”, Sol. Energy Mater. Sol. Cells, 68(2001) 401-422. [42] M. Lira-Cantu, F. C. K, “Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2-TiO2): performance improvement during long-time irradiation,” Sol. Energy Mater. Sol. Cells, 90(2006) 2076-2086. [43] K. Schwarzburg, and F. Willig, “Origin of photovoltage and photocurrent in the nanoporous dye-sensitized electrochemical solar cell,” J. Phys. Chem. B, 103(1999) 5743. [44] A. Vittadini, A. Selloni, F. P. Rotzinger, M. Grätzel, “Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces,” Phys. Rev. Lett., 81(1998) 2954. [45]A. W. Norman, and F. A. Michael, “CRC-elsevier materials selector CRC press Inc.,” Florida(2000). [46] J. Desilvestro, M. Grätzel, L. Kavan, and J. Moser, “Highly efficient sensitization dioxide,” J. Am. Chem. Soc., 107(1985) 2988. [47] G. Smestad, C. Bignozzi, and R. Argzzi, “Testing of dye sensitized TiO2 solar cells I: experimental photocurrent output and conversion efficiencies,” Sol. Energy Mater. Sol. Cells, 32(1994) 259. [48] C. J. Barde, F. Arendse, P. Omte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram, Soc., 80(1997) 3157. [49] G. Schlichtholrl, S. Y. Huang, J. Spraque, and A. J. Frank, “Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy,” J. Phys. Chem. B, 101(1997) 8141. [50] E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, “Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers,” J. Am. Chem. Soc., 125(2003) 475. [51] M. Grätzel, “Perspectives for dye-sensitized nanocrystalline solar cells,” Photovolt. Res. Appl., 8(2000)171. [52] Z. Zou, J. Ye, K. Sayama, and H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 4, (2001) 625. [53] G. J. Meyer, “Efficient light-to elecyrical energy conversion : nanocrystalline TiO2 films modified with ingorganic sensitizers,” J. Chem. Educ., 74(1997) 1705. [54] Md. K. Nazeeruddin, P. Péchy and M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by the black dye based on a trithiocyanato- ruthenium complex,” Chem. Commum., 17(1997)1705. [55] A. Hagfeldt, and M. Grätzel, “Molecular Photovoltaics,” Acc. Chem. Res., 33 (2000)269. [56] Md. K. nazzeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklovers, C. H. Fischer, and M. Grätzel, “Acid-Base equilibria of (2,2-Bipyridyl-4,4-dicarboxylic acid) ruthenium(II) complexes and the effect of photonation on charge-transfer sensitization of nanocrystalline titania,” Inorg. Chem., 38(1999)6298. [57] Md. K. nazzeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, “Investigation of sensitixer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” J. Phys. Chem. B,107 (2003)8981. [58] A. Kay, and M. Grätzel, “Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and natural porphyrins,” J. Phys. Chem., 97 (1993)6272. [59] W. M. Campbell, A. K. Burrell, D. L. Officer, and K. W. Jolley, “Porphyeins as light harvesters in the dye-sensitized TiO2 solar cell,” Coord. Chem. Rev., 248(2004) 1363. [60] M. K. Nazeeruddin, P. P., T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc, 123(2001)1613-1624. [61] Y. Liu, A. H., X.-R. Xiao, and S.-E. Lindquist, “Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell,” Sol. Energy Mater. Sol.Cells, 55(1998)267-281. [62] S. Kambe, S. N., T. Kitamura, Y. Wada, and S. Yanagida, “Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems,” J. Phys. Chem. B, 106(2002)2967-2972. [63] S. Pelet, J.E. M., and M Grätzel, “Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2,” J. Phys. Chem. B, 104(2000)1791-1795. [64] K. Hara, T. H., T. Kinoshita, K. Sayama, and H. Arakawa, ”Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells,” Sol. Energy Mater. Sol. Cells, 70(2001)151-161. [65] S. Y. Huang, G. S., A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B, 101(1997)2576-2582. [66] S. A. Sapp, C. M. E., C. Contado, S. Caramori, and C. A. Bignozzi, “Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells,” J. Am. Chem. Soc, 124(2002)11215-11222. [67]U. Bach, D. L., P. Comte, J. E. Moser, J. Salbeck, H. Spreitzer, and M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, (1998)583-585. [68] W. U. Huynh, J. J. D., and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science, 295(2002)2425-2427. [69] D. Gebeyehu, C. J. B., N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, and D. Vanderzande, “Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials,” Synth. Met., 125(2002)279- 287. [70] T. Takenobu, T. M., Y. Iwasa, T. Mitani, ”Mott-Hubbard transition in alkali ammonia fullerides,” Synth. Met., 121(2001)1573-1574. [71] G. R. A. Kumara, S. K., M. Okuya, and K. Tennakone, ”Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor,” Langmuir 18, (2002)10493-10495. [72] Q. B. Meng, K. T., X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, and M. Uragami, “Fabrication of an efficient solid-state dye-sensitized solar cell,” Langmuir 19, (2003)3572-3574. [73] B. O''Regan, D. S., and T. T., “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL''NCS /CuSCN: initiation and potential mechanisms,” Chem. Mat., 10(1998)1501-1509. [74] G. Kumara, A. K., R. Senadeera, V. Jayaweera, A. De Silva, and K. Tennakone, “Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide,” Sol. Energy Mater. Sol. Cells, 69(2001)195-199. [75] P. Wang, S. M. Z., P. Comte, I. Exnar, and M. Grätzel, “Gelation of ionic liquid- based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells,” J. Am. Chem. Soc, 125(2003)1166-1167. [76] W. Kubo, K. M., T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, “Quasi-solid-state dye-sensitized TiO2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine,” J. Phys. Chem. B, 105(2001)12809-12815. [77] E. Stathatos, P. L., S. M. Zakeeruddin, P. Liska, and M. Grätzel, “A quasi-solid -state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid,” Chem. Mat., 15(2003)1825-1829. [78] E. Chatzivasiloglou, T. S., N. Spyrellis, P. Falaras, “Solid-state sensitized solar cells, using [Ru(dcbpyH2)2Cl2]H2O as the dye and PEO/titania/I-/I3- as the redox electrolyte,” J. Mater. Process. Technol., 161(2005)234-240. [79] S. R. Scully, M.T. L., R. Herrera, E. P. Giannelis, and G. G. Malliaras, “Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte,” Synth. Met., 144(2004)291-296. [80] H. Usui, H. M., N. Tanabe, and S. Yanagida, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes,” J. Photochem. Photobiol. A-Chem., 164(2004)97-101. [81] H. Paulsson, A. H., and L. Kloo, “Molten and solid trialkylsulfonium iodides and their polyiodides as electrolytes in dye-sensitized nanocrystalline cells,” J. Phys. Chem. B, 107(2003)13665-13670. [82] A. Kay, and M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon power,” Sol. Energy Mater. Sol. Cells, 44 (1996)99. [83] N. Papageorgiou, W. F. Maier, and M. Grätzel, “An iodide/triiodide reduction electrocatalyst for aqueous and organic media,” J. Electrochem. Soc., 144(1997) 876. [84] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the thickness of the Pt films coated on a counter electrode on the performance of a dye-sensitized solar cell,” J. Electroanal. Chem., 570(2004)257. [85] S. N. Chen, S. K. Deb, H. Witzke, “Dye-titanium dioxide photogalvanic cell,” United States Patent 4080488. [86] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature 261, (1976)402-403. [87] J. M. Maca′k, H. Tsuchiya, A. Ghicov, P. Schmuki, “Dye-sensitized anodic TiO2 nanotubes,” Electrochemistry Communications, 7(2005)1133–1137. [88] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin and C. A. Grimes, “Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes,” Nanotechnology, 17(2006) 1446–1448. [89] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor and Craig A Grimes, “Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells,” J. Phys. D: Appl. Phys., 39(2006) 2498–2503. [90] H. Wang, C. T. Yip, K. Y. Cheung, A. B. Djurišić, and M. H. Xie, “ Titania- nanotube-array-based photovoltaic cells,” Appl.phys.lett., 89(2006)23508. [91] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett., 6(2006) 215. [92] K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 Nanotubes Arrays,” Nano Lett., 7(2006)69. [93] K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulos, O. K. Varghese and C. A. Grimes, “Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells,” Nanotechnology, 18(2007) 65707. [94] C. J. Lin, W. Y. Yu, and S. H. Chien, “Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells,” Applied physics letters, 91(2007)233120. [95] S. H. Kang, J. Y. Kim, Y. Kim, H. S. Kim, and Y. E. Sung, “Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells,” J. Phys. Chem. C, 111(2007)9614-9623. [96] K. Ishibashi, R. Yamaguchi, Y. Kimura, and M. Niwanoa, “Fabrication of titanium oxide nanotubes by rapid and homogeneous anodization in perchloric acid/ethanol mixture,” Journal of The Electrochemical Society, 155(2008)K10-K14. [97] D. Yanga, H. Parka, S. Choa, H. Kima, W. Choi, “TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area,” Journal of Physics and Chemistry of Solids, 69(2008)1272–1275. [98] 鄭青,周保學,白晶,蔡偉民,廖俊生, “TiO2奈米管陣列及其應用” Chemistry, vol 19(2007) no1. [99] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties,and solar energy applications,” Solar Energy Materials & Solar Cells, 90 (2006) 2011–2075. [100] H. Liu, W. Yang, Y. Ma, Y. Cao, J. Yao, J. Zhang, T. Hu. “Synthesis and Characterization of Titania Prepared by Using a Photoassisted Sol-Gel Method,” Langmuir, ”19 ( 2003) 3001-3005 [101] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras“ Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity,” Langmuir, 20( 2004)2900-2907
摘要: 採用陽極氧化法在鈦薄膜上製備二氧化鈦奈米管陣列光電極,利用場發式掃描電子顯微鏡(FESEM)與X光繞射儀(XRD)對二氧化鈦奈米管的形貌和結構進行分析,詳細考察陽極氧化參數對奈米管陣列形貌的影響。濺鍍於玻璃上的鈦薄膜經由在氫氟酸電解液中陽極氧化後得到二氧化鈦奈米管陣列薄膜。二氧化鈦奈米管在陽極電壓3V至10V之間陽極氧化會使管徑增大從10nm至26nm。在電解液與氧化條件最佳化情況下,可製備出良好的二氧化鈦奈米管。陽極氧化鈦的結構與改變陽極電壓、電解液濃度和氧化時間有關,要從鈦薄膜得到良好的奈米管關鍵在於製程必須在低溫下操作,此製程能避免大量的奈米管薄膜經由化學溶解而脫落。 此試片陽極處理完後,在通氧的環境下以300℃~600℃作熱處理,使奈米管陣列結晶。在400℃退火後,二氧化鈦薄膜出現銳鈦礦相(anatase),在更高的溫度(600℃)退火下,二氧化鈦薄膜變成銳鈦礦相與金紅石相(rutile)混合多晶結構。
TiO2 nanotube-array photoelectrodes are fabricated by anodic oxidation on a pure titanium thin film. The morphology and structure of the nanotube array are characterized by Field Emission Scanning Electron Microscope (FESEM) and x-ray diffraction (XRD) techniques. All parameters in anodic oxidation process are investigated. Titanium film sputtered on glass is anodized in a hydrofluoric acid (HF) electrolyte to obtain nanotube-array film. The TiO2 nanotube array are grown at different potentials between 3 V and 10 V resulting in tube shape with diameter ranging from 10 to 26 nm. Under optimized electrolyte and oxidation conditions, fine nanotubes of titania are fabricated. Morphology of the anodized titanium changes remarkably along with different applied voltages, electrolyte concentration and oxidation time. The key factor to achieve a fine nonotube layer on the thin film is to process at low temperature in this oxidation procedure. This result prevents damage in the tube due to chemical dissolution. The samples are then annealed in oxygen at 300 ℃ to 600 ℃ to crystallize the nanotube arrays. After annealing over 400℃, anatase phase appears in TiO2 thin film. After annealing at higher temperature (600 ℃), the structure of TiO2 thin film becomes the mixed-phase polycrystalline with both anatase and rutile.
其他識別: U0005-0606200815242600
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.