Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4175
DC FieldValueLanguage
dc.contributor洪瑞華zh_TW
dc.contributor賴新一zh_TW
dc.contributor.advisor武東星zh_TW
dc.contributor.author萬孟昇zh_TW
dc.contributor.authorWan, Meng-Shenen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:27:11Z-
dc.date.available2014-06-06T06:27:11Z-
dc.identifierU0005-0808200807323400zh_TW
dc.identifier.citation【1】 《科學發展》2005年6月,390期,50~55頁。 【2】 《科學發展》2002年1月,349期,22~29頁。 【3】 台灣綜合研究院 http://www.tri.org.tw/unfccc/download/kp_c.pdf. 【4】 三洋電機http://www.sanyo.co.jp/koho/hypertext4/0706news-j/0619-1.html. 【5】 維基百科 http://zh.wikipedia.org/w/index.php?title=%E5%A4%AA%E9%99%BD%E8%83%BD&variant=zh-tw. 【6】 謝銘洋,徐宏昇,陳哲宏,陳逸南,專利法解讀,元照出版有限公司,2002。 【7】 莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書出版,2003。 【8】 T. Markvart, “Solar Electricity,” John Wiley& Sons, 2000. 【9】 D. A. Neamen, “Semiconductor Physics and Devices,” The McGraw Hill Companies, 1992. 【10】 S. O. Kasap, “Optoelectronics and Photonics Principles and Practices, ” Pearson Prentice Hall Companies, 2001. 【11】 B. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall and H. M. Branz, “High-Deposition Rate a-Si:H n-i-p Solar Cells Grown by HWCVD,” Thin Solid Films, vol.395, p.p. 292-297, Sep. 2001. 【12】 H. Wiesmann, A. K. Ghosh, T. McMahon, M. Strongin, “a-Si : H Produced by High-Temperature Thermal Decomposition of Silane,” J. Appl. Phys., vol. 50, pp. 3752-3754, May 1979. 【13】 毛信元,以熱燈絲化學氣相沉積法製作複晶矽薄膜及特性分析,國立中興大學材料工程學研究所碩士論文,2004。 【14】 H. Matsumura and H. Tachibana, “Amorphous Silicon Produced by a New Thermal Chemical Vapor Deposition Method Using Intermediate Species SiF2,” J. Appl. Phys., vol. 47, pp. 833-835, Oct. 1985. 【15】 A. H. Mahan, J. Carapella, B. P. Nelson, and R. S. Crandall, “Deposition of Device Quality, Low H Content Amorphous Silicon,” J. Appl. Phys., vol.69, pp.6728-6730, May 1991. 【16】 H. Matsumura, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method,” Jpn. J. Appl. Phys., vol. 30, pp.1522-1524, Aug. 1991. 【17】 M. Heintze, R. Zedlitz, H. Wanka, and M. Schubert, “Amorphous and Microcrystalline Silicon by Hot Wire Chemical Vapor Deposition,” J. Appl. Phys., vol. 79, pp. 2699-2706, Mar. 1996. 【18】 H. Matsumura, “InGaAsP/InP Optical Switches Using Carrier Induced Refractive Index Change,” Appl. Phys. Lett., vol. 51, pp. 804-805, Mar. 1987. 【19】 Hideki Matsumura, “Silicon Nitride Produced by Catalytic Chemical Vapor Deposition Method,” J. Appl. Phys., vol. 66, pp. 3612-3517, Oct. 1989. 【20】 H. Matsumura, “Low Temperature Deposition of Silicon Nitride by the Catalytic Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys., vol. 28, pp. 2157-2161, Oct. 1989. 【21】 A. Izumi, A. Masuda, S. Okada and H. Matsumura, “Novel Surface Cleaning of GaAs and Formation of High Quality SiNx Films by Cat-CVD Method,” Institute of Physics Conference Series, No. 155, pp. 343-346, Apr. 1997. 【22】 A. Izumi, A. Masuda and H. Matsumura, “Surface Cleaning and Nitridation of Compound Semiconductors Using Gas-Decomposition Reaction in Cat-CVD Method,” Thin Solid Films, vol. 343, pp. 528-531, Apr. 1997. 【23】 A. Izumi, S. Sohara, M. Kodo and H. Matsumura, “Low-Temperature Oxidation of Silicon Surface Using a Gas Mixture of H2 and O2 in a Catalytic Chemical Vapor Deposition System,” Electrochem. Solid State Lett., vol. 2, pp. 388-389, Aug. 1999. 【24】 A. Izumi, H. Sato and H. Matsumura, “Electrical and Structural Properties of Catalytic-Nitrided SiO2 Films,” Gate Stack and Silicide Issues in Silicon Processing II, Materials Research Society Symposium Proceedings, vol. 670, pp. K7.8.1-K7.8.6, May 2001. 【25】 S. Matsumoto, Y. Sato, M. Tsutsumi and N. Setaka, “Vapor Deposition of Diamond Particles From Methane,” Jpn. J. Appl. Phys., vol. 21, pp. L183-L185, Apr. 1983. 【26】 K. Saito, Y. Uchiyama and K. Abe, “Preparation of SiO2 Thin Films Using the Cat-CVD Method,” Thin Solid Films, vol. 430, pp. 287-291, Apr. 2003. 【27】 U. Weber, M. Koob, R. O. Dusane, C. Mukherjee, H. Seitz und B. Schröder, “a-Si:H Based Solar Cells Entirely Deposited by Hot-Wire CVD,” Proceedings of the 16th European Photovoltaic Solar Energy Conference, pp. 286-289, Mar. 2000. 【28】 B. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall and H. M. Branz, “High-Deposition Rate a-Si:H n-i-p Solar Cells Grown by HWCVD,” Thin Solid Films, vol.395, pp. 292-297, Sep. 2001. 【29】 http://www.nedo.go.jp/kankobutsu/nenshi/3color/1999_2000/jigyo/03daigaku3.html. 【30】 U. Weber, M. Koob, R. O. Dusane, C. Mukherjee, H. Seitz und B. Schröder, “a-Si:H Based Solar Cells Entirely Deposited by Hot-Wire CVD,” Proceedings of the 16th European Photovoltaic Solar Energy Conference, pp. 286-289, Oct. 2000. 【31】 K. Inoue, S. Tange, K. Tonokure, M. Koshi, “Catalytic Decomposition of SiH4 on a Hot Filament,” Thin Solid Films, vol.395, pp. 42-46, Sep. 2001. 【32】 M. Koshi, F. Tamura, H. Matsui, “Rate Constants for the Reactions of Hydrogen Atoms with SiHnF4 − n (n = 4, 3, 2),” Chem. Phys. Lett. vol.173, pp. 235-240, Oct. 1990. 【33】 H. Matsumura, “Study on Catalytic Chemical Vapor Deposition Method to Prepare Hydrogenated Amorphous Silicon,” J. Appl. Phys., vol. 65, pp. 4396-4402, Jun. 1989. 【34】 A. Gallagher, “Some Physics and Chemistry of Hot-Wire Deposition,” Thin Solid Films, vol. 395, pp. 25-28, Sep. 2001. 【35】 E. C. Molenbroek, “Deposition of Hydrogenated Amorphous Silicon with the Hot Wire Technique,” Ph.D.-Thesis, University of Colorado, Apr. 1995. 【36】 B. Y. Tsui, S. S. Lin, C. S. Tsui, C. C. Hsia, “Plasma Charging Damage During Contact Hole Etch in High-Density Plasma Etcher,” Microelectronics Reliability, vol. 40, pp. 2039-2046, Dec. 2000. 【37】 Y. J. Lee, S. W. Hwang, G. Y. Yeom, J. W. Lee, J. Y. Lee, “Etch-Induced Damage in Single Crystal Si Trench Etching by Planar Inductively Coupled Cl2/N2 and Cl2/HBr Plasmas,” Thin Solid Films, vol. 341, pp. 168-171, Mar. 1999. 【38】 J. Lossen, S. Klein, F. Finger, “Optimization of the Filament Arrangement at Constant Radiant Heat in HW-CVD for the Preparation of Compact μc-Si:H at High Deposition Rates,” Thin Solid Films, vol. 451-452, pp. 531-535, Mar. 2004. 【39】 H. Matsumura, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method,” Jpn. J. Appl. Phys., vol.30, L1522-L1524, Aug. 1991. 【40】 M. Heintze, R. Zedlitz, H. Wanka, and M. Schubert, “Amorphous and Microcrystalline Silicon by Hot Wire Chemical Vapor Deposition,” J. Appl. Phys., vol. 79, pp. 2699-2706, Mar. 1996. 【41】 E. C. Molenbroek, Ph.D.-Thesis, University of Colorado, 1995. 【42】 T. Sawada et al., “High-Efficiency a-Si/c-Si Heterojunction Solar Cell,” Conf. Record of the IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii, USA, pp. 1219-1226, Dec. 1994. 【43】 M. Tucci, G. D. Cesare, “17 % Efficiency Heterostructure Solar Cell Based on p-type Crystalline Silicon,” J. Non-Cryst. Solids, vol. 338-340, pp. 663-667, Sep. 2004. 【44】 E. Centurioni, D. Iencinella, R. Rizzoli and F. Zignani, “Silicon Heterojunction Solar Cell: a New Buffer Layer Concept with Low-Temperature Epitaxial Silicon,” IEEE Transactions on Electron Devices, vol. 51, pp. 1818-1824, Nov. 2004. 【45】 H. M. Branz, C. W. Teplin, M. Page, E. Iwaniczko, L. Roybal, D. H. Levi, R. Bauer, Y. Xu, P. Stradins, T. Wang and Q. Wang, “Recent Advances in Hot-Wire R&D at NREL: From 18 % Silicon Heterojunction Cells to Silicon Epitaxy Low Temperatures,” Conf. Record of the 4th International Conference on Hot-Wire CVD (Cat-CVD) Process, Gifu, Japan, pp. 327-330, May 2006. 【46】 C. Voz, D. Munoz, M. Fonrodona, I. Martin, J. Puigdollers, R. Alcubilla, J. Escarre, J. Bertomeu and J. Andreu, Bifacial “Heterojunction Silicon Solar Cells by Hot-Wire CVD with Open-Circuit Voltages Exceeding 600 mV,” Thin Solid films, vol. 511-512, pp. 415-419, Jun. 2006. 【47】 Q. Wang, M. R. Page, Y. Xu, E. Iwaniczko, E. Whnams, T. H. Wang, “Development of a Hot-Wire Chemical Vapor Deposition n-type Emitter on p-type Crystalline Si-Based Solar Cells,” Thin Solid Films, vol. 430, pp. 208-211, Aug. 2003. 【48】 Q. Zhang, M. Zhu, F. Liu and J. Li, “Influence of Hydrogen Treatment Time on the Performance of nc-Si:H/c-Si Heterojunction Solar Cells in HWCVD Process,” Conf. Record of the 15th International Photovoltaic Science & Engineering Conversion, Shanghai, China, pp. 1170-1171, Nov. 2005. 【49】 K. Maknys, A. G. Ulyashin, H. Stiebig, A. Y. Kuznetsov and B. G. Svensson, “Analysis of ITO Thin Layers and Interfaces in Heterojunction Solar Cells Structures by AFM, SCM and SSRM Methods,” Thin Solid Films, vol. 511-512, pp. 98-102, Feb. 2006. 【50】 http://www.sanyo.co.jp/clean/solar/hit_e/hit.html. 【51】 M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, “HITTM Cells High-efficiency Crystalline Si Cells with Novel Structure,” Prog. Phototovolt. Res. Appl., vol. 8, pp. 503-513, Nov. 2000. 【52】 M. W. M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H. M. van dert Werf, R. E. I. Schropp and W. F. van der Weg, “Performance of Heterojunction p+ Microcrystalline Silicon n Crystalline Silicon Solar Cells,” J. Appl. Phys., vol. 82, pp. 6089-6095, May 1997. 【53】 J. Pl, E. Centurioni, C. Summonte, R. Rizzoli, A. Migliori, A. Desalvo and F. Zignani, “Homojunction and Heterojunction Silicon Solar Cells Deposited by Low Temperature High Frequency Plasma Enhanced Chemical Vapor Deposition,” Thin Solid Films, vol. 405, pp. 248-255, Feb. 2002. 【54】 B. Jagannathan and W. A. Anderson, “Defect Study in Amorphous Silicon/Crystalline Silicon Solar Cells by Thermally Stimulated Capacitance,” J. Appl. Phys., vol. 82, pp. 1930-1935, May 1997. 【55】 C. Voz, I. Martin, A. Orpella, J. Puigdollers, M. Vetter, R. Alcubilla, D. Soler, M. Fonrodona, J. Bertomeu and J. Andreu, “Surface Passivation of Crystalline Silicon by Cat-CVD Amorphous and Nanocrystalline Thin Silicon Films,” Thin Solid Films, vol. 430, pp. 270-273, Aug. 2003. 【56】 M. Kunst, S. V. Aichberger, G. Citarella and F. Wu, “Amorphous Silicon/Crystalline Silicon Heterojunctions for Solar Cells,” J. Non-Cryst. Solids, vol. 299-302, pp. 1198-1202, 2002. 【57】 E. I. Shtyrkov, I. B. Kkhaibullin, M. M. Zaripov, M. F. Galyatudinov, and R. M. Bayazitv, “Local Laser Annealing of Implantaion Doped Semiconductor Layers,” Sov. Phys. Semicond., vol. 9, No. 10, pp. 1309-1310, Aug. 1976. 【58】 B. Khabullin, E. I. Shtyrkov, M. M. Zaripov, M. F. Galyautdinov, and G. G. Zakirov, Sov. Phys. Semicond., vol. 11, No. 2, pp. 190-192, Feb. 1977. 【59】 Y. Matsui, M. Okuyama, N. Fujita, and Y. Hamakawa, “Laser Annealing to Produce Ferroelectric-Phase PbTiO3 Thin Films,” J. Appl. Phys., vol. 52, pp. 5107-5111, Jun. 1981. 【60】 X. M. Lu, J. S. Zhu, X. F. Huang, C. Y. Lin, and Y. N. Wang, “Laser-Induced Phaser Transformation From Amorphous to Perovskite in PbZr0.44Ti0.56O3 Films with The Substrate at Room Temperature,” Appl. Phys. Lett., vol. 65, pp. 2015-2017, Feb. 1995. 【61】 D. Bersani, P. P. Lottici, A. Montenero, S. Pigoni, “Phase Transformations in Sol-Gel Prepared PbTiO3,” J. Mater. Sci., vol. 31, pp. 3153-3157, Oct. 1996. 【62】 A. Ito, A. Machida and M. Obara, “Epitaxial Growth of BaTiO3 Optical Thin Films by Pulsed KrF Laser Deposition and in Situ Pulsed Laser Annealing,” Jpn. J. Appl. Phys., vol. 36, No.6B, part 2, pp. L805-L807, Jun. 1997. 【63】 Y. Zhu, J. Zhu, Y. J. Song, and S. B. Desu, “Laser-Assisted Low Temperature Processing of Pb (Zr, Ti) O3 Thin Film,” Appl. Phys. Lett., vol. 73, No. 14, pp. 1958-1960, Nov. 1998. 【64】 L. C. Pathak, D. Bhattacharya, A. Dhar and K. L. Chopra, “Effect of Laser Annealing on Y-Ba-Cu-Oxide Superconductors, Material Research Bulletin,” vol. 32, No.5, pp.619-625, Mar. 1997. 【65】 P. Boher, J. L. Stehle and E. Fogarassy, “A New Process to Manufacture Thin SiGe and SiGeC Epitaxial Films on Silicon by Ion Implantation and Excimer Laser Annealing,” Appl. Surf. Sci., vol. 138, pp. 199-205, Aug. 1999. 【66】 M. Bertolotti, “Physical Processes in Laser-Materials Interactions,” Plenum Press, New York, p. 190, Apr. 1983. 【67】 H. Sunayama, K. Yamada, M. Karasawa and K. Ishibash, “Preparation of Poly-Si Films by Cat-CVD for Thin Film Transistor,” Thin Solid Films, vol. 430, pp. 226-229, Apr. 2003. 【68】 Z. Iqbal, S. Veprek, A.P. Webb, P. Capezzuto, “Raman Scattering from Small Particle Size Polycrystalline Silicon,” Solid State Commum., vol. 37, pp. 993-996, Mar. 1981.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4175-
dc.description.abstract矽異質接面太陽電池是一種新結構的太陽電池,此結構的電池由於兼具了單晶或多晶矽晶片電池的穩定性與高轉換效率,以及薄膜太陽電池的低溫且低成本的製程之優點,可望實現高效率與低成本的研究目標,因而被各界所討論與研究,是種非常具有發展潛力的太陽電池結構。 本論文先針對矽異質接面太陽電池相關之美國專利進行分析,瞭解最新的專利技術與研究進展,並研究開發創新的低成本高效率製程。本研究中,我們利用熱燈絲化學氣相沉積法製作微晶矽/單晶矽異質接面太陽電池,並利用波長為355 nm之釹-釔石榴石雷射對射極層做不同功率的雷射退火處理,使微晶矽再結晶,有效的提升矽膜品質,藉此改善元件的轉換效率,之後再利用不同的雷射功率對正面電極做退火處理,改善電極與射極層之間的歐姆接觸。 實驗結果顯示,運用雷射退火技術確實可以提升微晶矽/單晶矽異質接面太陽電池的轉換效率,經過雷射處理後元件的短路電流密度與填充因子都有所提昇,經過最佳化製程參數之後,我們得到了轉換效率為12.47 %、填充因子為0.67、短路電流密度為30.53 mA/cm2,且開路電壓為0.613 V的異質接面太陽電池,雷射退火技術未來將可望應用於生產高效率的矽異質接面太陽電池。zh_TW
dc.description.abstractThe heterojunction solar cell based on silicon (Si) is one of the new wafer-type structures for photovoltaic application, which features the stability and high efficiency of single-crystalline or polycrystalline Si solar cells. The lower process temperature is another advantage of the Si heterojunction solar cell as compared with that used for the bulk Si wafer one. Therefore, this research topic has been received intensive attention in recent years. In this thesis, the U.S patents related to the Si heterojunction solar cells have been analyzed to understand the latest technique and development, so as to create a new process with low cost and high efficiency. In our experiments, the hot-wire chemical vapor deposition (CVD) was adopted to deposit μc-Si:H/c-Si heterojunction layer, and the Nd-YAG laser was applied to proceed annealing toward emitter layer with different laser power levels, in that, to re-crystallize the micro-crystal Si. The quality of Si films and the conversion efficiency of components can be improved effectively. After that, the different laser powers have been used to anneal to improve the ohmic contact characteristics between the electrode and emitter layer. The obtained results emphasize that the conversion efficiency can be actually increased by applied the laser annealing technique to μc-Si:H/c-Si heterojunction solar cell. The short-circuit current density and fill factor of components were increased after laser annealing. After optimizing the process parameters, the study resulted in a conversion efficiency 12.47 %, fill factor of 0.67, short-circuit current density of 30.53 mA/cm2, and open circuit voltage of 0.613 volt. Therefore, the laser annealing technique is expected to achieve high efficiency Si heterojunction solar cells in the future.en_US
dc.description.tableofcontents誌謝 iii 摘要 iv Abstract v 目錄 vii 圖目錄 x 表目錄 xiii 第一章 緒論 1 1-1 前言 1 1-1-1 能源危機與溫室災難 1 1-1-2 太陽電池發展歷史 2 1-1-3 世界各國推廣太陽能的對應政策 4 1-1-4 太陽電池發電的優缺點 4 1-2 研究動機 6 第二章 專利分析 7 2-1 專利之意義與重要性 7 2-2 專利分析 8 2-3 異質接面太陽電池美國專利回顧 10 2-3-1 元件結構專利 10 2-3-2 電極專利 13 2-3-3 表面粗化專利 13 2-3-4 透明導電膜專利 14 2-3-5 射極層專利 16 2-3-6 本質層專利 16 第三章 理論基礎與文獻回顧 18 3-1 太陽能源 18 3-2 太陽電池原理 19 3-3 太陽電池等效電路與效率計算 22 3-4 CVD 薄膜沉積機制 24 3-5 熱燈絲化學氣相沉積法 28 3-5-1 熱燈絲化學氣相沉積法的回顧 29 3-5-2 熱燈絲化學氣相沉積法之機制原理 32 3-5-3 熱燈絲化學氣相沉積法沉積矽薄膜的反應機制 33 3-5-4 熱燈絲化學氣相沉積法之優點 36 3-6 異質接面矽太陽電池 37 3-7 雷射退火 40 3-7-1 雷射退火簡介 40 3-7-2 雷射退火的晶粒成長機制 41 第四章 實驗方法與步驟 43 4-1 實驗規劃和流程 44 4-2 實驗材料與基材前處理 45 4-3 沉積系統與薄膜製備 47 4-3-1 薄膜沉積系統簡介 47 4-3-2 異質接面太陽電池製備流程 48 4-4 量測設備說明及原理 50 4-4-1 薄膜厚度量測(α-step) 50 4-4-2 矽薄膜結晶率之量測(拉曼光譜儀) 51 4-4-3 矽薄膜微結構分析 53 4-4-4 矽薄膜表面形貌分析 54 4-4-5 模擬日光AM1.5效率量測 54 第五章 結果與討論 55 5-1 射極層摻雜濃度對效率的影響 55 5-2 不同的雷射退火功率對效率的影響 60 5-3 不同的正面電極雷射退火功率對效率的影響 64 5-4 經過雷射退火後的晶片分析 69 5-4-1 拉曼光譜分析 69 5-4-2 X光繞射分析 69 5-4-3 霍爾效應分析 70 5-4-4 場發射掃描式電子顯微鏡與穿透式電子顯微鏡分析 71 第六章 結論與未來展望 73 參考文獻 75zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.subjectSi heterojunction solar cellen_US
dc.subject矽異質接面太陽電池zh_TW
dc.subjecthot-wire CVDen_US
dc.subjectlaser annealingen_US
dc.subjectre-crystallizationen_US
dc.subject熱燈絲化學氣相沉積法zh_TW
dc.subject雷射退火zh_TW
dc.subject再結晶技術zh_TW
dc.title雷射退火對矽異質接面太陽電池之特性影響研究zh_TW
dc.titleEffects of Laser Annealing on Characteristics of Silicon Heterojunction Solar Cellsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.