Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4176
標題: 以反應式直流磁控濺鍍法進行氮化鋁於裝飾鍍膜之研究
Investigation of AlNX Decorate-Coatings Using Reactive DC Magnetron Sputtering
作者: 翁嘉盛
Weng, Chia-Sheng
關鍵字: Decorate-coating
裝飾鍍膜
Sputtering,
Aluminum nitride
直流反應磁控濺鍍
氮化鋁
出版社: 精密工程學系所
引用: 1.M. H. Bouix, C. P. Dumortier, “Color Trends in PVD,” 43rd Annual Technical Conf. Society of Vacuum Coaters, Denver, April 15-20, pp. 52-54, 2000. 2.Y. L. Luo, W. L. Sun, Y. Y. Yang, “Study on the Color Change Rule of the ZrN Films,” J. Trans. Mater. Heat Treatment, vol. 26, No. 5, pp. 46-48, 2005. 3.X. L. Li, W. L. Sun, J. G. Niu, “Study on Color Influencing Regulation of Nitrogen Partial Pressure on Zirconium Nitride Film,” Vacuum & Cryogenics, vol. 10, No. 4, pp. 215-217, 2004. 4.T. P. Drvsedau, T. Neubert, N. A. Panckon, “The Properties of Aluminum Oxide and Nitride Films Prepared by d.c Sputter-Deposition from Metallic Target,” Surf. Coatings Technol., vol. 163-164, pp. 164-168, 2003. 5.K. Zhang, W. Y. Li, “Preparing of C-axis Oriented AlN Thin Films,” Journal of Sichuan University, vol. 42, pp. 415-417, 2005. 6.K. T. Yang, R. L. Fu, “Research on Preparation and Dielectric Properties of AlN Films,” Shandong Ceramics, vol. 30, No. 3, pp. 7-12, 2007. 7.伊林、柳克強、張家豪、艾啟峰,真空技術與應用,第五章電漿放 電,行政院國家科學委員會精密儀器中心出版,2001。 8.羅吉宗,薄膜科技與應用(修定版),全華科技圖書,第2-1~2-5 章,2005。 9.K. Wasa, S. Hayakawa, “Handbook of Sputter Deposition technology,” Ch. 3, Noyes Publications, 1992. 10.羅吉宗,薄膜科技與應用(修定版),全華科技圖書,第2-11~2-12 章,2005。 11.J. L. Vossen, W. Kern, “Thin Film Processes,” Princenton New Jersey, Ch. 3, 1978. 12.B. Chapman, “Glow Discharge Processes,” John Wiley and Sons, Ch. 2, 1982. 13.S. M. Rossnagel, J. J. Cuomo, W. D. Westwood, “Handbook of Plasma Processing Technology,” Noyes Publications, New Jersey, pp. 164, 1990. 14.張弘學,低溫濺鍍氮化鋁薄膜之研究,國立台灣科技大學材料科 技研究所碩士論文,2003。 15.J. Musil, “Low-Pressure Magnetron Sputtering,” Vacuum, vol. 3-4, pp. 363-372, 1998. 16.G. Alfrend, “Cold Plasma in Materials Fabrication,” IEEE Press, New York, pp. 1-45, 1993. 17.D. A. Mann, F. Leyendecker, “Adhesion Aspects of Plastic Composites Materialized by a Combined Vacuum- Electrochemical Deposition Process,” Surf. Coatings Technol., vol. 68-69, pp. 691-695, 1994. 18.W. C. Kittler, Jr. Gnomic Group LLC, R. Park, ”Plasma Pre-treatment of Polymer Webs for Vacuum Deposition,” Society of Vacuum Coaters, vol. 48, pp. 233-236, 2005. 19.林桂如,高密度電漿對塑膠基材之表面處理及其對鍍膜附著特性 之影響,國立中興大學材料工程研究所碩士論文,2004。 20.J. K. Park, W. T. Ju, “Pre-Treatments of Polymers by Atmospheric Pressure Ejected Plasma for Adhesion Improvement,” Surf. Coatings Technol., vol. 174-175, pp. 547-552, 2003. 21.P. Groning, M. Collaud, G. Dietler, L. schlapbach, “Plasma Modification of Polymethyl methacrtlate and Polyethylene terephthalate Surfaces,” J. Appl. Phys., vol. 76. No. 2, pp. 887-892, April 6, 1994. 22.W. Petasch, E. Rauchle, M. Walker, P. Elsner, “Improvement of the Adhesion of Low-Eergy Polymers by a Short-Time Plasma Treatment,“ Surf. Coatings Technol., vol. 74-75, pp. 682-688, 1995. 23.E. Janczak, H. Jensen, G. Sorensen, Mater. Sci. Engineer., vol. A140, pp. 696, 1991. 24.詹德均,以氧離子束輔助磁控濺鍍光學薄膜之研究,國立中央大 學光電科學研究所博士論文,2005。 25.I. Safi, “Recent Aspects Concerning DC Reactive Magnetron Sputtering of Thin Film : A Review,” Surf. Coatings Technol., vol. 127, pp. 203-219, 2000. 26.J. Musil, P. Baroch, J. Vlcek, K. H. Nam, J. G. Han, “Reactive Magnetron Sputtering of Thin Films : Present Status and Trents,” Thin Solid Films, vol. 475, pp. 208- 218, 2005. 27.R. De Gryse, D. Depla, “Plasma-Target Interaction in Reactive Sputtering,” 44th Annual Technical Conf. Society of Vacuum Coaters, Philadelphia, pp. 361-370, 2001. 28.D. Depla, R. De Gryse, “Target Poisoning During Reactive Magnetron Sputtering : Part II : The Influence of Chemisorption and Gettering,” Surf. Coatings Technol., vol. 183, pp. 190-195, 2003. 29.S. Berg, P. Carlsson, H. Barankova, C. Nender, “Hysteresis Effects in The Sputtering Process Using Two Reactive Gases,” Thin Solid Films, vol. 260, pp. 181- 186, 1999. 30.P. Fan, “Electric Conductivity Characteristics of Ultrathin Metallic Films,” Acta Metallurgica Sinica, vol. 35, No. 3, pp. 261-264, 1999. 31.Z. L. Tang, R. F. Huang, L. S. Wen, “Machanism of Size Effect of Electric Conductivity in Ultrathin Metal Film,” Acta Metallurgica Sinica, vol. 11, No. 4, pp. 438- 440, 1996. 32.T. Wang, J. Gong, H. Du, J. Liu, C. Sun, L. Wen, “Study on Electromagnetic Wave Transmission Performances of Ultra-Thin Metallic Films,” Acta Metallurgica Sinica, vol. 41, No. 8, pp. 814-818, 2005. 33.J. P. Kar, G. Bose, S. Tuli, “A Study on the Interface and Bulk Charge Density of AlN Films with Sputtering Pressure,” Vacuum, vol. 41, No. 8, pp. 814-818, 2006. 34.M. B. Assouar, O. Elmazria, L. LeBrizonal, P. Alnot, “Reactive DC Magnetron Sputtering of Aluminum Nitride Films for Surface Acoustic Wave Devices,” Diamond and Related Materials, vol. 22, pp. 213-218, 2002. 35.U. Figueroa, O. Salas, J. Oseguera, “Deposition of AlN on Al Substrates by Reactive Magnetron Sputtering,” Surf. Coatings Technol., vol. 11, pp. 413-417, 2005. 36.S. Paldey, S. C. Deevi, “Properties of Single Layer and Gradient (Ti , Al) N Coatings,” Mater. Sci. Engineer., vol. A361, pp. 1-8, 2003. 37.S. Zollner, A. Konkar, R. B. Greoqory, “Dielectric Function of AlN Grown of Si (111) by MEB,” Research Society Symposium-Proceedings, vol. 572, pp. 231-236, 1999. 38.A. Werbowya, A. Olszynab, K. Zdunekb, “Peculiarities of Thin Film Deposition by Means of Reactive Impulse Plasma Assisted Chemical Vapor Deposition (RIPACVD) Method,” Thin Solid Films, vol. 459, pp. 160-164, 2004. 39.S. Kaneko, M. Tanaka, K. Masu, “Epitaxial Growth of AlN Film by Low Pressure MOCVD in Gas-Beam-Flow Reactor,” J. Cryst. Growth, vol. 115, pp. 643-647, 1991. 40.E. Ruiz, S. Alvarez, P. Alemany, “Electronic Structure and Properties of AlN,” Phys. Review B, vol. 49, pp. 7115-7123, 1994. 41.顏豐明,高熱傳導率氮化鋁基板材料之簡介,材料與社會,第45- 46頁,1993。 42.楊馥如,射頻磁控濺鍍二氧化錫薄膜之微結構與光電性質研究, 國立中興大學材料工程研究所碩士論文,2005。 43.B. Chapman, “Glow Discharge Process,” John Wiley & Sons, New York, Ch. 2, 1980. 44.M. Ohring, “The Material Science of Thin Film,” Academic Press, Inc, pp. 413-429, New Jersey, 1992. 45.J. A. Thornton, “Influence of Apparatus and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings,” J. Vac. Sci. Technol., vol. 11(4), pp. 666-667 1974. 46.何英杰,裝飾性氮化鋯鍍膜運用 OES 系統調控薄膜顏色之研究, 明道管理學院材料暨系統工程研究所碩士論文,2005。 47.Zircon http://www.omniserv.com.tw/zircon/zi_21.htm 48.http://www.contractor-books.com/ZR/TriScanner_Pro_SL. htm 49.http://www.atto.com.tw/
摘要: 塑膠材料被廣泛應用於3C產品之外觀,無論是手機機殼、筆記型電腦外殼等等,但是傳統電鍍技術有耐磨性差及金屬光澤保留短暫等缺點,因此逐漸被取代,而利用真空裝飾性鍍膜可於塑膠材料表面上呈現出有色金屬鏡面光澤薄膜、耐磨性好及光澤保留時間長等優點。 氮化鋁為透明、耐高溫、高介電能力及耐腐蝕等之化合物材料,其用途廣泛。本研究以反應式直流磁控濺鍍方法於聚碳酸酯塑膠基板上鍍製鋁、錫金屬膜當氮化鋁薄膜之反射層,以氬氣為工作氣體,藉以研究不同反應式氣體(氮氣)流量 0~80 sccm 的通入,探討氮化鋁薄膜顏色變化影響因素,並以光譜儀、原子力顯微鏡、電子能譜化學分析儀、薄膜導電分析儀及薄膜厚度量測等儀器,測定薄膜的成份比例、表面粗糙度對於 CIE 標準色度 L* a* b* 值的影響。 氮化鋁薄膜顏色的產生,最主因為薄膜疊層數及氮氣多寡的原故,實驗結果顯示,氮氣流量 0~15 sccm 及 40~80 sccm 的通入,對於氮化鋁薄膜顏色的變化,並無明顯的幫助,推測乃是因為氮氣流量的太少與過多,均不影響顏色的改變,20~35 sccm 為顏色改變範圍,由銀色 (L* : 101~111, a* : 0.9~1.2, b* : 15~16) →藍色 (L* : 46~83, a* : -12~-5, b* : -45~-17) →金黃 (L* : 74~91, a* : 6~9, b* : 33~52) →淺金色 (L* : 90~104, a* : 1~2, b* : 34~ 36) 。實驗中以固定疊層數一層做為最基礎研究,因此使用前述氮氣流量並改變氮化鋁膜疊層數的延伸,將可發展更多顏色之氮化鋁薄膜。
The plastic materials have been applied in 3C (computer, communication and consumer electronics) products widely, such as like the shell of mobile phones, notebook, etc…. However, the technology of the traditional electroplating process has the weakness of the wear-resisting and short-term of metal luster. Therefore it has been replaced progressively by the surface decorate-coatings (SDC) technology which presents the strength as making the luster of colorful metal film as like mirror, well wear-resisting and can keep long-term luster on the surface of plastic materials. Among the various SDC materials, aluminum nitride (AlNx) is one of the transparent, high-temperature resisting, high dielectric and corrosion-resisting candidates. In this thesis, the aluminum and tin films were first coated on the polycarbonate (PC) substrates as the reflective layers. Then the AlNx thin film was deposited on the reflective layers using DC reactive magnetron sputtering. The color change of AlNx thin films can be well-controlled by the flow rate of the reactive gas (N2). The number of layers and the N2 flow rate were found to be the key factors in making AlNx colorful. For the N2 flow in the range of 0~15 sccm and 40~80 sccm, there is no change on the AlNx color. This suggests that the N2 flow is too low or too high. When the N2 flow varies from 20 to 35 sccm, the surface color can change from silver, to blue, to golden, and to golden yellow. This indicates that we can develop the AlNx SDC with more colors via changing the number of layers with various N2 flow rates.
URI: http://hdl.handle.net/11455/4176
其他識別: U0005-1008200823452500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1008200823452500
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.