Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4184
標題: 陽極電極結構對直接甲醇燃料電池效能的影響
Influence of electrode structure on the DMFC performance
作者: 吳建德
Wu, Chien-Te
關鍵字: Direct Methanol Fuel Cell
直接甲醇燃料電池
DMFC
Catalyst
composition
Membrane Electrode Assembly
MEA
觸媒層
電極結構
膜電極組
出版社: 精密工程學系所
引用: [1] 黃鎮江,燃料電池,全華科技圖書股份有限公司,2003。 [2] 勝光科技,新能源時代的DMFC直接甲醇燃料電池原理、應用與實作, 旗標出版股份有限公司,2006。 [3] 鄭煜騰與鄭耀宗, 質子交換膜型燃料電池的製作技術, 能源季刊, 27, 118-131, 1997. [4] 楊志忠、林頌恩、韋文誠,”燃料電池的發展現況”,科學發展月刊,367期,pp.30-33,2003年7月。 [5] 鄭耀宗、徐耀昇,燃料電池技術進展的現況分析,八十八年節約能源論文發表會論文專輯,第409-422 頁,1999。 [6] 中強光電股份有限公司 http://www.ctx.com.tw/ [7] Hitachi Taiwan http://www.hitachi.com.tw/ [8] YAMAHA moto Taiwan http://www.yamaha-motor.com.tw/index.htm [9] BMW http://www.bmw.com.tw/home/index.htm [10] A.S. Arico, P. Creti, E. Modica, G. Monforte, V. Baglio and V. Antonucci, “Investigation of direct methanol fuel cells based on unsupported Pt-Ru anode catalysts with different chemical properties,” Electrochimca Acta, vol. 45, pp. 4319-4328, 2000. [11] A.S. Arico, G. Monforte, E. Modica, P.L. Antonucci and V. Antonucci, “Investigation of unsupported Pt-Ru catalysts for high temperature methanol electro-oxidation,” Electrochemistry Communications, vol. 2, pp. 466-470, 2000. [12] A.S. Arico, A.K. Shukla, K.M. El-khatib, “Effect of carbon-supported and unsupported Pt-Ru anode on the performance of solid-polymer-electrolyte direct methanol fuel cell,” J App. Electrochem, vol. 29, pp. 671-676, 1999. [13] A. Fischer, J. Jindra, and H. Wendt, “Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells,” Journal of Applied Electrochemistry, vol. 28, pp. 277-282, 1998. [14] V.A. Paganin, E.A. Ticianelli, and E.R. Gonzalez, “Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells,” Journal of Applied Electrochemistry, vol. 26,pp. 297-304, 1996. [15] F. Lufrano, E. Passalacqua, and Squadrito, “Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs,” Journal of Applied Electrochemistry, vol. 29, pp. 445-448, 1999. [16]E. Passalacqua, G. Squadrito, and F. Lufrano, “Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes,” Journal of Applied Electrochemistry, vol. 31, pp. 449-454, 2001. [17] E. Antolini, R.R Passos, and E.A. Ticianelli, “Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells,” Journal of Power Sources, vol. 109, pp. 477-482, 2002. [18] M. Neergat, and A.K. Shukla, “Effect of diffusion-layer morphology on the performance of solid-polymer-electrolyte direct methanol fuel cells,” Journal of Power Sources, vol. 104, pp.289-294, 2002. [19] K-W. Park, B-K. Kwon, J-H. Choi, “New RuO2 and Carbon-RuO2 composite diffusion layer for use in direct methanol fuel cells,” Journal of Power Sources, vol. 109, pp.439-445, 2002. [20] S.K. Chang, D.-Y. Kim, H-K. Lee, “Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells,” Journal of Power Sources, vol. 108, pp.185-191, 2002. [21] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and signal cell,” J. Power Sources, Vol. 80, pp. 226-234, 1999. [22] S-Y. Cha, J-M. Song, and W-E. Lee, “Performance of porton exchange membrane fuel cell electrodes prepared by direct deposition of untrathin platinum on the membrane surface,“ Journal of Applied Electrochemistry, vol. 28, pp. 1413-1418, 1998. [23] S. Srinivasan, E.A. Ticianelli, C.R. Derouin, and A. Redondo “Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes,” Journal of Power Source, vol. 22, pp. 359-357, 1988. [24] S. Zhingang, Y. Baolian, and H. M. “Bifunctional electrodes with a thin catalyst layer for ‘unitized’ porton exchange membrane regenerative fuel cell,” Journal of Power Source, vol.79, pp. 82-85, 1999. [25] Y-G. Chun, C-S. Kim, D-H. Peck, and D.-R. Shin ”Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes,” Journal of Power Source, vol. 71, pp. 174-178, 1998. [26] S.Y. Cha, and W. M. Lee, “Performance of Proton Exchange Membrane Fuel cell Electrodes Prepared by Direct Deposition of Ultrathin Plathin on the Membrane Surface”, Journal of Electrochemistry Socity , vol. 146(11), pp. 4055-4060, 1999. [27] M. Watanabe, Y Genjima, K Turumi, “Direct methanol oxidation on platinum electrodes with ruthenium atoms in Hot Phosphoric Acid,” J electrochem. Soc. , vol. 144(2), pp. 423-428, 1997. [28] K. Scott, W.M. Taama, P. Argyropoulos, “Material aspects of the liquid feed direct methanol fuel cell,” J.Appli. Electrochem., vol. 28(12), pp. 1389-1397, 1998. [29] M. Hogarth, P. Christensen, A. Hamnett, A. Shukla, “The design and construction of high-performance direct methanol fuel cells,” J.Power Sources, vol. 69, pp.113-124, 1997. [30] M.S. Wilson, S. Gottesfeld, “Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes,” J. App. Electrochem., vol. 22, pp. 1-7, 1997. [31] A.S. Arico, P. Creti, N. Giordano, V. Antonucci, P.L. Antonucci, A. Chuvilin, “Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C,” J. Appl. Electrochem., vol. 26, pp. 959-967, 1996. [32] S. Mukerjee, S. Srinivasan, A.J. Appleby, “Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells,” Electrochim. Acta, vol. 38 (12), pp.1661-1669, 1993. [33] M. Uchida, Y. Aoyama, N. Eda, A. Ohta, “New Preparation Method for Polymer-Electrolyte Fuel Cells,” J. Electrochem. Soc., vol. 142, pp. 463-468, 1995. [34] M. Uchida, Y. Fukuoka, Y. Sugawara, H. Ohara, A. Ohta, “Improved preparaton process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells,” J. Electrochem. Soc., vol. 145, pp. 3708-3713, 1998. [35] A.S. Arico, P. Creti, P.L. Antonucci, J. Cho, H. Kim, V. Antonucci, “Optimization of operation parameters of a direct methanol fuel cell and physical-chemical investigation of catalyst/electrolyte interface,” Electrochim. Acta, vol. 43, pp.3719-3729, 1998. [36] M.S. Wilson, J.A. Valerio, S. Gottesfeld, “Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers,” Electrochim Acta, vol. 40, pp. 355-363, 1995. [37] Y-G. Chun, C-S. Kim, D-H. Peck, D-R. Shin, “Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes,” J. Power Sources, vol. 71, pp.174-178, 1998. [38] S.Q. Song, Z.X. Liang, W.J. Zhou, G.Q. Sun, Q. Xin, “Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structure properties and cell performance,” J. Power Sources, vol. 145, pp. 495-501, 2005. [39] A. hamnett, G. L. troughton, “Electroactalysis and the direct methanol fuel cell,” Chemistry & Industry, vol. 6, pp. 480-483, 1992. [40] M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, “Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfon at ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells,” Journal of the Electrochemical Society, vol. 142, pp. 4143-4149, 1995. [41] E. Passalacqua, F. Lufrano, G. Squadrito, L. Giorgi, “Nafion content in thecatalyst layer of polymer electrolyte fuel cells: effects on structure and performance,” Electrochimca Acta, vol. 6, pp. 799-805, 2001. [42]S.C. Thomas, X. Ren, S. Gottesfeld, “Influence of ionomer content in catalyst layers on direct methanol fuel cell performance,” Journal of the Electrochemical Society, vol. 146, pp. 4354-4359, 1999. [43] D.R. Rolison, P.L. Hagans, K.E. Swider,J.W. Long, “Roleof hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity,” Langmuir, vol. 15, pp. 774-779, 1999. [44] J. Nordlund, A. Roessler, G. Lindbergh, “The influence of electrode morphology on the performance of a DMFC anode,” Journalof Applied Elelctrochemistry, vol. 2, pp. 259-265, 2002. [45] L. Liu, G. Pu, R. Viswanathan, Q. B.Fan, R.X. Liu and E.S Smotkin, “Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells,” Electrochimca Acta, vol. 43, pp. 3657-3663, 1998. [46] K. Sundmacher and K. Scott, “Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapor-liquid-solid system”, Chemical Engineering Science, Vol. 54, pp. 2927-2936, 1999. [47] J. H. Wee., “Which type of fuel cell is more competitive for portable application:Direct methanol fuel cells or direct borohydride fuel cells?”, Journal of Power Sources, Vol. 161, pp. 1-10, 2006. [48] W.Y. Hsu.,J.R. Barkley, and P. Meakin,“Ion percolation and insulator-to-conductor transition in Nafion perfluorosulfonic acid membranes,”Macromolecules, Vol. 13, pp. 198-200, 1980. [49] A. Hamnett,“Mechanism and electrocatalysis in the direct methanol fuel cell,”Catalysis Today, vol. 38, pp. 445-457, 1997.
摘要: 本研究透過調整陽極觸媒成份的分配比例,來達到改變電極結構的目的,經過各種結果的比對,找出觸媒層中Nafion溶液在直接甲醇燃料電池中最佳的分配比例。結果也證實,以此方式完成的電池性能,其開路電壓比市售MEA高出18%,最大功率密度增加了5.5%,且觸媒載量降低了10%、膜電極組(MEA)厚度降低11%,成功降低了MEA製作成本和電池堆的厚度。 氣體擴散層(GDL)疏水程度也對電池效能有著很大的影響,本研究透過比較素材以及各種不同疏水程度的氣體擴散層。結果顯示,陽極氣體擴散層利用素材本身具備的些許疏水性即能有效的增進電池效能,若是增加疏水程度反而會使得電池效能降低高達25%,其疏水程度和電池性能優劣的關係,在本研究中也有詳細介紹。
This research is focused on the ration of anodic catalyst composition, finally finding better ration of Nafion solution in anodic catalyst. This change results in advance efficiency; furthermore, which efficiency is better than ready-made MEA. The open circuit voltage(OCV) is increased 18% and the maximum power density is also raised 5.5%;moreover, the weight of catalyst is decreased 10% and the thickness of MEA is decreased about 11%.The above-mentioned things are what MEA can reduce cost and thickness. The degree of hydrophobia on Gas Diffusion Layer(GDL) influence efficiency of MEA, in this research we compare many samples. Finally we need not to increase the hydrophobia in GDL, which is enough to provide the path of methanol and gas. This research have detailed treat in correlation between hydrophobia and efficiency.
URI: http://hdl.handle.net/11455/4184
其他識別: U0005-1906200815034100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1906200815034100
Appears in Collections:精密工程研究所

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.