Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4189
標題: 具雙面粗化及高反射鏡面基板之高效率氮化鎵發光二極體之研製
Investigation of High-Efficient GaN Light-Emitting Diodes with Double-Sides Roughened Surfaces and High Reflectivity Mirror Substrate
作者: 謝創宇
Hsieh, Chuang-Yu
關鍵字: GaN
氮化鎵
light-emitting diodes (LEDs)
laser lift-off (LLO)
roughening
thermal conductivity
發光二極體
雷射剝離技術
粗化
散熱
出版社: 精密工程學系所
引用: 參考文獻 [1] 史光國, “半導體發光二極體及固態照明,” 全華科技,台北,台灣, p. 1.1 (2005). [2] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C.H. Kuo, C. H. Chen, J. K. Sheu, and J. F. Chen, Electron Devices, IEEE Transactions 49,1093 (2002). [3] D. B. Eason, W. C. Hughes, J. Ren, M. Riegner, Z. Yu, J. W. Cook, J. F. Schetzina, G. Cantwell, and W. C. Harsch, Electron. Lett. 30, 1178 (1994). [4] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, Electron Devices, IEEE Transactions 31, 1643 (1984). [5] K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 4777 (2004). [6] H. Sugawara, and M. Ishikawa, and G. Hatakoshi, App. Phys. Lett. 58, 1010 (1991). [7] H. Sugawara, and M. Ishikawa, and G. Hatakoshi, App. Phys. Lett. 61, 1752 (1992). [8] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, IEEE. 85, 1752 (1997). [9] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995). [10] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, Appl. Phys. Lett. 64, 2839 (1994). [11] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, Electron. Lett. 32, 132 (1996). [12] J. I. Pankove, and P. E. Norris, RCA (Radio Corporation of America) Review. 33, 377 (1972). [13] S. Yoshida, S. Misawa, and S. Gonda, Journal of Vacuum Science & Technology B. 1, 250 (1982). [14] M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano, and S. Sakai, Jpn. J. Appl. Phys. 37, L291 (1998). [15] E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M. E. Gaevski, V. Adivarahan, and M. A. Khan, Appl. Phys. Lett. 84, 2998 (2004). [16] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. New York: Wiley and Sons (2002). [17] S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes. London: Taylor and Francis (2000). [18] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers. Berlin: Springer (2000). [19] M. R. Krames, M. O. Holocomb, G. E. Hofler, C. C. Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Carford, Appl. Phys. Lett. 75, 2365 (1999). [20] M. R. Krames, G. Christenson, D. Coffins., L. W. Cook M. G. Craford, A. Edwards, R. M., Fletcher, N. Gardner, W. Goetz, W. Imler, E. Johnson, R. S. Kern, R. Khare, F. A. Kish, C. Lowery, M. J. Ludowise, R. Mann, M. Maranowski, S. Maranowski, P. S. Martin, J. O''Shea, S. Rudaz, D. Steigerwald, J. Thompson, J. J. Wierer, J. Yu, SPIE Proc. 3938, 2 (2000). [21] J. J. Wierer, J. C. Bhat, C. H. Chen, G. Christenson, L. W. Cook, M. G. Craford, N. F. Gardner, W. Götz, R. S. Kern, R. Khare, A. Kim, M. R. Krames, M. J. Ludowise, R. Mann, P. S. Martin, M. Misra, J. O''Shea, Y. C. Shen, F. M. Steranka, S. A. Stockman, S. Subramanya, S. L. Rudaz, D. A. Steigerwald, J. Yu, SPIE Proc. 4278, 127 (2001). [22] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, J, Appl. Phys. 93, 9383 (2003). [23] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, IEEE Photo Technol. Lett. 16, 144 (2004). [24] S. M. Pan, R. C. Tu, Y.M. Fan, R. C. Yeh, and J. T. Hsu, IEEE Photon Technol. Lett. 15, 646 (2003). [25] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, IEEE Photon Technol. Lett. 15, 649 (2003). [26] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, IEEE Photon Technol. Lett. 16, 750 (2004). [27] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, IEEE Photon. Technol. Lett. 17, 19 (2005). [28] J. Baur, B. Hahn, M. Fehrer, D. Eisert, W. Stein, A. Plössl, F. Kuhn, H. Zull, M. Winter, and V. Harle, Phys. Stat. Sol. (a) 194, 399 (2002). [29] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, IEEE Photon Technol. Lett. 14, 1400 (2002). [30] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taguchi, Phys. Stat. Sol. (a), 188, 121 (2001). [31] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三 版, 高立圖書有限公司, 台北, 台灣, pp. 104-206 (2000). [32] D. K. Schroder, Semiconductor Material and Device Characterization. New York, Wiley (1998). [33] V. M. Burmedez, J. Appl. Phys. vol. 80, 1190 (1996). [34] 史光國, “半導體發光二極體及固態照明,” 全華科技,台北,台灣, pp. 2.1-2.4 (2005). [35] Y. Xi and E. F. Schubert, Appl. Phys. Lett. 85, 2163 (2004). [36] Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, Appl. Phys. Lett. 86, 031907 (2005). [37] Lumileds, “Thermal Management Considerations for Super Flux LEDs,” Application Note, 1149-4. [38] S. Todoroki, M. Sawai, and K. Aiki, J. Appl. Phys. 58, 1124 (1985). [39] H. I. Abdelkader, H. H. Hausien, and J. D. Martin, Rev. Sci. Instrum. 63,2004 (1992). [40] S. Murata, and H. Nakada, J. Appl. Phys. 72, 2514 (1992). [41] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu, C. C. Lin, Mater. Sci. & Eng. B, 112, 10 (2004). [42] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, J. Appl. Phys. 83, 3172 (1998). [43] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, Appl. Phys. Lett. 74, 1275 (1999). [44] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, J. Appl. Phys. 86, 4491 (1999). [45] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, Appl. Phys. Lett. 78, 3265 (2001). [46] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, Appl. Phys. Lett. 74, 3930 (1999). [47] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett. 79, 2925 (2001). [48] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu, IEEE. 50, 2208 (2003). [49] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, IEEE. 15, 646 (2003). [50] P. R. Tavernier and D. R. C. Dunn, J. Appl. Phys. 89, 1527 (2001). [51] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, Micron, 36, 281 (2005). [52] M. V. Allmen and A. Blastter, Berlin, 2nd Springer Publisher (1995). [53] R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, Phys. Stat. Sol. (a) 26, 353 (1974). [54] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, J. Appl. Phys. 76, 236 (1994). [55] M. E. Lin, B. N. Sverdlov, and H. Morkoc, Appl. Phys. Lett. 63, 3625 (1993). [56] W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow and N. W. Cheung, J. Electronic Mater. 28, 1409 (1999). [57] L. Ma, K. F. Adeni, C. Zeng, Y. Jin, K. Dandu, Y. Saripalli, M. Johnson, D. Barlage, CS MANTECH Conference, April 24-27 (2006). [58] J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996). [59] L. W. Tu, Y. C. Lee, S. J. Chen, I. Lo, D. Stocker and E. F. Schubert, Appl. Phys. Lett. 73, 2802 (1998). [60] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, Jpn. J. Appl. Phys. 39, 2357 (2000). [61] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, Micron, 36, 281 (2005). [62] 林義豐, 金屬基板型氮化鎵發光二極體之開發研究, 中興大學材料工程學系碩士學位論文 (2006). [63] 黃少華,以磊晶膜轉移技術研製高效率磷化鋁銦鎵與氮化銦鎵發光二極體, 中興大學材料科學與工程學系博士學位論文 (2007).
摘要: 論文主要利用圖案化基板、雙面粗化(n-GaN 、p-GaN)、高反射鏡面及高熱傳導基板來製作氮化鎵發光二極體,並探討其元件特性及製程可行性。其中p-GaN 粗化是由於磊晶時利用低溫成長方式產生六角孔洞 ; n-GaN 是將磊晶薄膜黏貼於暫時基板,利用氫氧化鈉溶液蝕刻成六角錐狀,再將已鍍好銀鏡面之矽基板,利用低溫黏貼方式轉移磊晶薄膜於具銀鏡面之矽基板即完成。 電特性方面,元件於基板的轉移過程並未造成其順向電壓上升,隨著操作電流加大至1000 mA時,Si-DR-LED(高反射鏡面矽基板、雙面粗化結構)及PSS-SR-LED(圖案化基板、單面粗化結構)之順向偏壓分別為4.89 V與4.85 V,依此結果推測,具有矽基板的Si-DR-LED其接面溫度低於藍寶石基板的PSS-SR-LED所造成 ; 在逆向偏壓方面,當在-5 V時,PSS-SR-LED之漏電流為0.086 μA,而Si-DR-LED為0.087 μA,幾乎不變,維持低於一般-5 V時,漏電流小於1 μA的標準,此電特性結果顯示此製程研究之可行性。光特性方面(光輸出功率),封裝後,在電流350 mA注入下,Si-DR-LED較PSS-SR-LED提升50.2%,電光轉換效率亦由14.33%提升至20.96%,而光取出效率由49.09%提升至73.72%,元件效率明顯改善。熱特性方面,於350 mA時,PSS-SR-LED的接面溫度由205.5°C下降至Si-DR-LED的158.9°C,降低了46.6°C,結果顯示氮化鎵薄膜經由基板轉移至矽基板後,可以得到較佳的熱傳導途徑,大電流操作下仍然可以維持良好的電特性及穩定性。
This thesis discussed the effects of patterned substrate, double-sides roughening (n-GaN and p-GaN), high reflectivity mirror, and high thermal conductivity substrate on the fabrication and performances of high brightness light emitting diodes (LEDs). The hexagonal cavities of the p-GaN was using low temperature growth method, whereas the n-GaN was roughened using NaOH wet etching method which resulted in hexagonal pyramidal structure. The samples with double-sides roughened morphologies were bonded to Si substrate with silver mirror by transparent adhesive layer. On the electrical characteristics, the forward voltage of transferred-type device was almost the same as the original LEDs. As the injection current increased up to 1A, the forward voltages of LEDs with double-sides roughened surfaces LEDs transferred to reflective mirror silicon (Si-DR-LED) and LEDs with single roughened surface grown on patterned sapphire substrate (PSS-SR-LED) were corresponding to 4.89 V and 4.85 V, respectively. On the -5 V reverse voltage, the leakage current of Si-DR-LED and PSS-SR-LED are 0.087 μA and 0.086 μA, respectively. On the optical characteristics, the output power (350 mA injection) of encapsulated Si-DR-LED increased 50.2% as compared with that of encapsulated PSS-SR-LED. Moreover the power efficiency of Si-DR-LED and PSS-SR-LED was 20.96% and 14.33%, respectively. Correspondingly, the light extraction efficiency of Si-DR-LED and PSS-SR-LED was 49.09% and 73.72%, respectively. On the thermal characteristics, the junction temperature of PSS-SR-LED is 205.5°C, whereas Si-DR-LED is 158.9°C. Obviously, there is 46.6°C junction temperature decreasing for the Si-DR-LED as compared with that for the PSS-SR-LED.
URI: http://hdl.handle.net/11455/4189
其他識別: U0005-2108200813583300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200813583300
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.