Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4191
標題: 高感度微型化帶狀式麥克風研製
Fabrication and Investigation of a High Sensitive Miniature Ribbon Microphone
作者: 陳冠位
Chen, Guan-Wei
關鍵字: miniature ribbon microphone
微型帶狀式麥克風
diaphragm
frequency response
flux leakage
振膜
頻率響應
漏磁
出版社: 精密工程學系所
引用: [1] E. C. Wente, “A condenser as a uniformly sensitive instrument for the absolute measurement of sound intensity”, Phys. Rev., vol. 10, pp. 39-63, 1917. [2] E. V. Carlson, “A subminiature condenser microphone, using electret technology”, The Hearing Dealer, April, 1973. [3] K. Matsuzawa, “Condenser microphones having a flat frequency response up to 500kHz”, Japan. Appl. Phys., vol. 17, pp. 451-152, 1978. [4] A. Dehe, “Silicon microphone development and application”, Sens. Actuators A, vol. 133, pp. 283-287, 2007. [5] 徐振諄, 高感度微型電容式矽微麥克風之研製, 國立中興大學精密工程研究所碩士論文, 民國96年. [6] C. W. Tan, J. Miao, “Analytical modeling for bulk-micromachined condenser microphone”, J. Acoust. Soc. Am., vol. 120, pp.750-761, Aug. 2006. [7] W. H. Hsieh, T. Y. Hsu, and Y. C. Tai, “A micromachined thin-film teflon electret microphone”, International Conference Solid-State Sensors and Actuators, pp. 425-428, 1997. [8] F. Harry, Olson, “A History of high-quality studio microphones”,J. Acoust. Soc., vol. 24, pp. 798-807, 1976. [9] F. Harry, Olson, “Microphones for recording”, J. Acoust. Soc., vol. 25, pp. 676-683, 1977. [10http://history.sandiego.edu/gen/recording/microphones2.html [11] http://vintagemicrophone.com/JShop/product.php?xProd=126 [12] G. M. Sessler and J. E. West, “Self-biased condenser microphone with high capacitance”, J. Acoust. Soc. Am., vol. 34, pp. 1787-1788, 1962. [13] P. R. Scheeper, A. G. H. van der, Donk, W. Olthuis, and P. Bergveld, “A review of silicon microphones”, Sens. Actuators A, vol. 44, pp. 1-11, 1994. [14] R. Schellin and G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges“, Sens. Actuators A, vol. 32, pp. 555-559, 1992. [15] M. Royer, J. O. Holmen, M. A. Wurm, O. S. Aadland and M. Glenn,“ZnO on Si integrated acoustic sensor”, Sens. Actuators A, vol. 4, pp. 357-362, 1983. [16] T.-J. Yao, “Parylene for MEMS applications”, Ph.D dissertation, Department of Electrical Engineering, California Institute of Technology, Pasadena, California, pp. 191-210, 2002. [17] H.-S. Noh, S. Kim, J. P. Hesketh, H. M, and L. Wong, “Miniature corrugated diaphragm for fiber-optic-linked pressure sensing (FOLPS)”, ASME International Mechanical Engineering Congress & Exposition Washington, D. C., pp. 16-21, 2003. [18] 邢泰剛, 微機電系統技術與應用, 行政院國家科學委員會精密儀器中心出版, pp. 544-557, 2003. [19] P. R. Scheeper, A. G. H. van der, Donk, W. Olthuis, and P. Bergveld,“Fabrication of silicon condenser microphone using single wafer technology”, J. Microelectromech. Syst. vol. 3, pp. 147-153, 1992. [20] R. Kressmann, M. Klaiber, G. Hess, “Silicon condenser microphones with corrugated silicon oxide/nitride electret membranes”, Sensors and Actuators A, vol. 100, pp. 301-309, 2002. [21] H. S. Kwon, K. C. Lee, “Double-chip condenser microphone for rigid backplate using DRIE and wafer bonding technology,” Sens. Actuators A, vol. 138, pp. 81-86, 2007. [22] P. R. Scheeper, A. G. H. van der, Donk, W. Olthuis, P. Bergveld, “A review of silicon microphones,” Sens. Actuators A, vol. 44, pp. 1-11, 1994. [23] A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate”, Sens. Actuators A, vol. 85, pp. 116-123, 2000. [24] X. Li, R. Lin, H. Kek, J. Miao, Q. Zou, “Sensitivity-improved silicon condenser microphone with a novel single deeply corrugated diaphragm”, Sens. Actuators A, vol. 92, pp. 257-262, 2001. [25] W. J. Wang, R. M. Lin, Q. B. Zou, X. X. Li, “Modeling ancharacterization of a silicon condenser microphone”, Journal of Micromechanics and Microengineering, vol. 14, pp. 403-409, 2004. [26] http://home.vicnet.net.an/~macinc/ness.9htm. [27] M. L. Gayford, B. Sc., C. Eng., M. I. E. E., A. C. G. I., D. I. C. Senior engineer, ITT Component Group, Harlow, “Electroacustic, microphone, earphones and loudspeakers”, London: Newnes-Butterworths Press, pp. 137-184. [28] 邢泰剛, 微機電系統技術與應用, 行政院國家科學委員會精密儀器中心出版, pp. 544-562, 2003. [29] A. J. Sprenkls, “A silicon subminiature electret microphone”, Ph.D. Dissertation, Twente University, Netherlands, 1988. [30] W. H. Hsieh, T.-Y. Hsu, and Y.-C. Tai, Int. Conf, “Solid-State Sensors and Actuators Transducers”, pp. 425-428, 1997. [31] J. Eargle, “The microphone book”, pp. 59-62, Oxford: Elsevier Press, 2004. [32] M. D. Giovanni, “Flat and corrugated diaphragm design handbook”, pp. 211-232, New York: CRC Press, 1982. [33] M. L. Gayford, ”Electroacoustic microphones, earphones and loudspeakers”, pp. 148-156, London: Newnes-Butterworths Press, 1970. [34] M. Mullenborn, P. Rombach, U. Klein, K. Rasmussen, J. F. Kuhmann, M. Heschel, ”Chip-size-packaged silicon microphones”, Sens. Actuators A, vol. 92, pp. 23-29, 2001. [35] M. P. Norton, “Fundamentals of noise and vibration analysis for engineer”, pp. 197-200, New York: Cambridge University Press, 1969. [36] A. G. H. van der, Donk, P. Bergveld and J. A. Voorthuyzen, “Optimal design of electret microphone MOSFET preamplifier”, J. Acoust. Soc., Am., vol. 91, pp. 2261-2269, 1992. [37] A. G. H. van der, Donk, J. A. Voorthuyzen and P. Bergveld, “General considerations of noise in microphone preamplifiers”, Sens. Actuators A, vol. 25, pp.515-520, 1991. [38] W. R. Bevan, R. B. Schulein, C. E. Seeler, “Design of a studio-quality condenser microphone using electret technology”, J. Audio Eng. Soc., vol. 26, pp. 947-957, 1978. [39]http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213018,00.html [40] D. P. Arnold, S. Gururaj, S. Bharadwaj, T. Nishida, M. Sheplak, “A piezoresistive microphone for aeroacustic measurement”, ASME Int. Mechanical Engineering Congress & Exposition, Proceedings of IMECE’01, pp. 1-8, 2001. [41] P. M. Morse, “Vibration and aound, international series in pure and applied physics”, New York: McGraw-Hill Press, 2nd ed., pp. 189-452, 1948. [42] B. B. Bouer, Shure Brothers, “Equivalent circuit analysis of mechanical-acoustic structures”, Inc. Chicago, Illinois, pp. 112-120, 1954. [43] 白明憲, 工程聲學, 全華科技圖書股份有限公司出版, pp. 5-61, 2005. [44] 王以真, 實用磁路設計, 全華科技圖書股份有限公司出版, pp.48-97, 2006. [45] 陳建盛, 矽晶麥克風之設計與製作, 國立交通大學電機與控制工程系碩士論文, 民國88年. [46] H. S. Noh, “Miniature corrugated diaphragm for fiber-opitc-linked pressure sensing (FOLPS)”, ASME Int. Mechanical Engineering Congress & Exposition Proceedings of IMECE’03, pp. 1-5, 2003. [47] 揚善國, 感應與量測度工程, 全華科技圖書股份有限公司, pp. 7-21, 2003.
摘要: 本論文提出微型化帶狀式麥克風設計與分析,使用微機電技術將傳統鋁帶式麥克風微型化,為了克服傳統鋁帶式麥克風導線感應電動式的方向性問題,提出雙迴路非對稱線圈。藉著磁通密度量測系統與模擬分析,獲得較佳的磁路系統以減少磁漏現象,提高微型化帶狀式麥克風的感度。 從實驗結果與材料的性質中可得知聚亞醯胺比高分子聚合物、氮化矽的振膜材料更可以獲得良好的麥克風靈敏度。另一方面,由於本研究的帶狀式麥克風屬於速度型的麥克風,振動的速度會影響到感度的好壞,因此本研究提出帶狀式振膜和整面式振膜兩種不同的類型振膜做比較,帶狀式振膜由於只有上下兩端的固定,振膜的振動速度較整面式的振膜快,故較整面式振膜獲得較高的靈敏度。在最佳的聚亞醯胺結構下(直徑=3mm, 厚度=2 μm),帶狀式振膜於1kHz的取樣下所量測得到的響應值為-54.8 dB V/Pa,相當於感度1.82 mV/Pa;整面式振膜於1kHz的取樣下所量測得到的響應值為-57.1 dB V/Pa,相當於感度1.39 mV/Pa。一般傳統市售帶狀式麥克風響應值為-50~-60 dB V/Pa,相當於感度3.16 mV/Pa~ 1 mV/Pa,故本論文所研究之微型化帶狀式麥克風已達傳統市售帶狀式麥克風響應值規格。
This thesis presents the design and simulation of a miniature ribbon microphone. The miniaturization of traditional aluminum ribbon microphone used Micro-Electro-Mechanical System (MEMS). An asymmetrical coil structure was designed in order to electromotive force direction problem. The simulation and magnetic flux measurement were used to obtain optimum magnetic system of high sensitivity miniature ribbon microphone. It was found that the diaphragm made of polyimide could provide better sensitivity than those made of SU-8 and SixNy materials. Moreover, ribbon microphone is a pressure gradient type and the vibration velocity of diaphragm affected its sensitivity. Thus, this thesis proposed two type diaphragms, one is the ribbon diaphragm and the other is the whole diaphragm. The ribbon microphone was just only fixed in top and bottom edges. It results in quick velocity as compare with the whole diaphragm type doing, Thus the ribbon diaphragm type presents high sensitivity. Under the optimized polyimide structure, the responsivity of ribbon diaphragm is -54.8 dBV/Pa (@1kHz) that it is corresponding to 1.82 mV/Pa sensitivity. One the other hand, the responsivity of whole diaphragm is -57.1 dBV/Pa (@1kHz) that it is corresponding to 1.39 mV/Pa sensitivity. Correspondingly, the responsivity of the commercially traditional ribbon microphone is -50 dBV/Pa to -60 dBV/Pa (@1kHz). Obviously, the performance of a miniatured ribbon microphone can provide good performance and obtain the market requirement. It has achieved the market demand.
URI: http://hdl.handle.net/11455/4191
其他識別: U0005-2108200822530400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200822530400
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.