Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4196
標題: 週期性表面粗化氮化鎵發光二極體之研製
Study on Periodic Surface Texturing GaN Light-Emitting Diodes
作者: 吳俊儀
Wu, Jun-Yi
關鍵字: GaN
氮化鎵
light-emitting diodes (LEDs)
surface texturing
self-mask
photonic crystal
發光二極體
粗化
自然光罩
光子晶體
出版社: 精密工程學系所
引用: 參考文獻 [1] G. B. Stringfellow, “High brightness light emitting diode”, Academic Press Inc. Boston, pp. 149-219, 1997. [2] H.Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett., vol. 58, pp. 1010-1012, 1991. [3] H. Sugawara, K. ltaya, H. Nozaki and G. Hatakoshi, “High-brightness lnGaAlP green light-emitting diodes,” App. Phys. Lett., vol. 61, pp. 1775-1777, 1993. [4] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE Invited paper., vol. 85, pp. 1752-1764, 1997. [5] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting,” pp. 5-9, New York: Wiley, 2002. [6] S. Nakamura and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light EmittersDiodes,” pp. 11-17, London: Taylor and Francis, 2000. [7] S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” pp. 6-10, Berlin: Springer, 2000. [8] G. E. Höfler, D. A. Vanderwater, D.C. DeFevere, F. A. Kish, M. D. Camras, F. M. Steranka and I. H. Tan, “Wafer bonding of 50-nm diameter GaP to AlGaInP-GaP light-emitting diode wafers,” Appl. Phys. Lett., vol. 69, pp. 803-805, 1996. [9] H. Sugawara, M. Ishikawa, Y. Kobubun, Y. Nishikawa and S. Naritsuka, “Semiconductor light-emitting device,” US Patent 5048035, 1991. [10] R. H. Horng, D. S. Wuu and S. C. Wei, “AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett., vol. 75, pp. 154-156, 1999. [11] E. H. Park, J. H. Kim, T. K. Yoo, and Y. S. Kwon, “Bell-shaped light emitting diodes (BS-LED) with a 45 degree corner reflector, deep side-wall, and microlens,” Proc. SPIE, vol. 4641, pp. 19-30, 2002. [12] 史光國, “半導體發光二極體及固態照明,” 全華科技圖書股份有 限公司出版, pp. 2-52 - 2-55, 2005. [13] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat and E. Yablonovitch, “Light extraction from optically pumbed light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett., vol. 75, pp. 1036-1038, 1999. [14] H. Y. Ryn, J. K. Hwang, Y. J. Lee and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE Selected topics in QE, vol. 8, pp. 231-237, 2002. [15] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett., vol. 41, pp. 377-379, 1982. [16] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 63, pp. 2174-2176, 1993. [17] C. Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. Lett., vol. 93, pp. 9383-9385, 2003. [18] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE Photonics Technol. Lett., vol. 15, pp. 649-651, 2003. [19] A. Köck, E. Gornik, M. Hauser and W. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett., vol. 57, pp. 2327-2329, 1990. [20] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 高立圖書有限公司出版, pp. 104-206, 2000. [21] D. K. Schroder, “Semiconductor Material and Device Characterization,” pp. 156-189, New York, Wiley, 1998. [22] V. M. Burmedez, “Study of oxygen chemisorption on the GaN(0001)-(1×1) surface,” J. Appl. Phys., vol. 80, pp. 1190-1200, 1996. [23] 史光國, “半導體發光二極體及固態照明,” 全華科技圖書股份有 限公司出版, pp. 2-1 - 2-72, 2005. [24] P. C. K. Kwok, C. C. Chan and E. Herbert Li, “Designing an external efficieny of over 30% for light emitting diode,” Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE, vol. 1, pp.187-188, 1998. [25] E. Herbert Li, Chun-Chung Chan, and P. C. K. Kwok, “Optimization of textured-surface light emitting diode,” Electron Devices Meeting, 1998. Proceedings., 1998 IEEE Hong Kong, pp.6-9, 1998. [26] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys., vol. 83, pp. 3172-3715, 1998. [27] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, and K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., vol. 86, pp. 4491-4497, 1999. [28] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, and J. K. Shen, “Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography,” Appl. Phys. Lett., vol. 91, pp. 013504, 2007.
摘要: 本論文對氮化鎵表面使用粗化之方式改變表面結構,使全反射臨界角改變進而提高氮化鎵發光二極體之光取出效率,研究方向將改變發光二極體元件尺寸300 × 300 μm2、500 × 500 μm2、1 × 1 mm2在ITO/p-GaN表面分別製作週期性與非週期性之粗化結構,利用微影技術製作具有3 μm孔洞之週期性蝕刻阻擋層以及使用聚苯乙烯奈米小球製作非週期性自然光罩,再利用ICP蝕刻出不同深度之週期性與非週期性表面粗化結構。由於1 × 1 mm2之發光二極體元件具週期性粗化之表現相較於非週期性之表面有較佳之光取出率,所以之後以此元件尺寸利用全像術製作光子晶體,週期分別為300 nm、450 nm、600 nm、900 nm。 電性方面,各種發光二極體元件在製程中並未造成順向電壓上升,都與傳統元件結構相符合,在逆向偏壓方面,也並沒有因為改變各種表面粗化結構而發生漏電之情形,在-5 V時維持一般漏電流小於1 μA的標準,此電特性結果顯示此製程研究之可行性。光特性方面(封裝後之光輸出功率),當元件尺寸為300 × 300 μm2時,在100 mA時聚苯乙烯結構之元件為31.4 mW較傳統結構元件的27.5 mW提升了14.1%。元件尺寸為500 × 500 μm2之3μm週期性結構蝕刻至p-GaN層元件,在200 mA時為46.4 mW,與傳統結構之45.0 mW相比較,可提升3.1%。元件尺寸1 × 1 mm2之3μm週期性結構蝕刻至p-GaN層與光子晶體週期300 nm之元件,在350 mA時,其光輸出功率分別為145.2 mW與191.7 mW,與傳統結構元件之87.4 mW相比,分別提升了66.1%與119.3%。 由以上結果發現週期性粗化,粗化尺寸為波長尺寸,其對輸出功率提昇效果最為顯著。
The major topic of this thesis is the investigation of the periodic surface texturing structure GaN light-emitting diode. In this research, the light extraction would be improved by modifying the critical angle. The manufacturing of variant periodic and non-periodic texturing topography is applied on ITO/p-GaN surface of LEDs with 300 × 300 μm2, 500 × 500 μm2 and 1 × 1 mm2 frame size, which with different depths of the ICP dry etching process. The 3μm periodic array structure is fabricated by photolithography technique. By polystyrene spheres (PSS) self-mask, the non-periodic surface texturing structure is fabricated. Based on the experimental results, the LED device with 1 × 1 mm2 frame would result in higher output power efficiency. Afterward the photonic crystal structure, cycle in 300 nm, 450 nm, 600 nm and 900 nm, could be applied on LED device which is fabricated by holography. On the electrical characteristics, the forward voltage of the surface texturing LEDs was not varied, comparing with the original LEDs. At the reverse voltage with -5 V, the surface texturing process would not cause the current leakage increase under dry-etching procedure. Based on the electrical characteristics with encapsulation, the leakage current lower then 1 μA at -5 V, it shows the surface texturing process being reliable. On the optical characteristics, the output power of the 300 × 300 μm2 frame size LEDs by PSS texturing was 31.4 mW, increased 14.1% as compared with the original LEDs is 27.5 mW at 100 mA injection current. The output power of the 500 × 500 μm2 LEDs by periodic array was 46.4 mW, increased 3.1% as compared with the original LEDs is 45.0 mW at 250 mA injection current. The output power of the encapsulated 1 × 1 mm2 photonic crystal LEDs, cycle in 300 nm, with etching stopped at p-GaN and photonic crystal are 145.2 and 191.7 mW, increased 66.1% and 119.3% as compared with the original LEDs is 87.4 mW at 350 mA. Based on the experiment result, we observed that the optimize output power can be obtain as the periodic roughing size closed to the output wavelength.
URI: http://hdl.handle.net/11455/4196
其他識別: U0005-2408200821245900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200821245900
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.