Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4205
標題: 氮化銦鎵太陽能電池之研製與特性分析
Fabrication and Characteristic of InGaN Solar Cells
作者: 林師婷
Lin, Shih-Tyng
關鍵字: InGaN
氮化銦鎵
solar cell
wafer bonding
laser lift-off
太陽能電池
晶圓鍵合
雷射剝離技術
出版社: 精密工程學系所
引用: [1] 蔡雨利、洪瑞華、吳志宏、趙志剛,光學工程,中華民國光學工程學會出版,100期,p. 1,2007。 [2] 美國國家再生能源實驗室 (NREL, http://www.nrel.gov ) [3] 林明獻,“太陽電池-技術入門”,全華出版社,台灣,2008。 [4] 莊家琛,“太陽能工程-太陽電池篇”,全華出版社,台灣,1997。 [5] Richard R. King et al., “Advances in High-Efficiency III-V Multijunction Solar Cells,” Advances in OptoElectronics, 29523, p. 8, 2007. [6] R. R. King, D. C. Law, K. M. Edmondson, et al., “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett., 90, p. 3, 2007. [7] J. F. Geisz et al., “High-efficiency GaInP/GaAs/InGaAs triplejunction solar cells grown inverted with a metamorphic bottom junction,” Appl. Phys. Lett., 91, p. 023502, 2007. [8] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III , E. E. Haller, Hai Lu, and William J. Schaff , “Small band gap bowing in In1–xGaxN alloys,” Appl. Phys. Lett., 80, p. 4741, 2002. [9] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, and J. W. Ager III, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. Lett., 94, p. 6477, 2003. [10] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., 80, p. 3967, 2002. [11] 施敏 原著,黃調元 譯著,“半導體元件物理與製程技術”,第二版,高立圖書有限公司,台灣,2002。 [12] D. A. Neamen “Semiconductor Physics and Devices,” the McGraw Hill Companies, 1997. [13] M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process,” IEEE Trans Electron Devices, 31, p. 671, 1984. [14] J. Omkar, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., 91, p. 132117, 2007. [15] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys., 83, p. 3172, 1998. [16] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett., 78, p. 3265, 2001. [17] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium ni-tride optoelectronic devices,” Appl. Phys. Lett., 74, p. 3930, 1999. [18] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN”, Appl. Phys. Lett., 79, p. 2925, 2001. [19] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu, “High brightness InGaN green LEDs with an ITO on n++-SPS upper contact”, IEEE Trans Electron Devices, 50, p. 2208, 2003. [20] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced output power of InGaN–GaN light-emitting diodes with high-transparency nickel-oxide–indium-tin-oxide ohmic contacts”, IEEE Photonics Technology Letters, 15, p. 646, 2003. [21] 蔡進譯,“超高效率太陽電池-從愛因斯坦的光電效應談起”,物理雙月刊,二十七卷五期 ,p. 701 ,2005。 [22] P. R. Tavernier and D. R. C. Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys., 89, p. 1527, 2001. [23] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “Preparation of GaN-based cross-sectional TEM specimens by laser lift-off,” Micron, 36, p. 281, 2005. [24] M. V. Allmen and A. Blastter, Berlin, 2nd Springer Publisher , 1995. [25] R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, “On the thermal decomposition of GaN in vacuum”, Phys. Stat. Sol., 26, p. 353, 1974. [26] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, “Thermal stability of GaN thin films grown on (0001) Al2O3, Al2O3 and (0001)Si 6H-SiC substrates,” J. Appl. Phys., 76, p. 236, 1994. [27] M. E. Lin, B. N. Sverdlov, and H. Morkoc, “Thermal Stability of GaN Investigated by Low-temperature Photoluminescence Spectroscopy,” Appl. Phys. Lett., 63, p. 3625, 1993. [28] L. Ma, K. F. Adeni, C. Zeng, Y. Jin, K. Dandu, Y. Saripalli, M. Johnson, D. Barlage, “Recent Progress of Highly Reliable GaN-HEMT for Mass Production,” CS MANTECH Conference, p. 171, 2006.
摘要: 本論文主要研究氮化銦鎵太陽電池之製程建立,並且探討不同主動層(In1-xGaxN)厚度和不同銦含量組成對於p-i-n結構之氮化銦鎵太陽能電池特性之影響。 元件中不同的主動層厚度會有不同的光吸收量,較厚雖然可增加光吸收量,但相對地串聯電阻、暗電流等特性皆會因厚度增加而增加,上述幾點都會影響太陽電池的轉換效率。 為了增加主動層對光的吸收我們利用雷射剝離技術把藍寶石基板移除,並利用晶圓鍵合技術將p-i-n結構之磊晶膜轉移至具有高反射鏡面之矽基板上,此具鏡面之基板有助於增加主動層(In1-xGaxN)對於光的吸收。經由基板轉置之元件使用標準太陽模擬光源量測系統(AM1.5,one sun)量測效率結果發現,此元件之電流密度由0.31 mA/cm2 增加為0.52 mA/cm2,電流密度相對提昇68%,而效率由0.51%提昇至0.80%。由此發現,此具鏡面之矽基板結構的確有利於氮化銦鎵太陽能電池。
This study is focused to fabricate Indium-Gallium-Nitride (InGaN) solar cells and investigated the effects of different thickness of active layer (In1-xGaxN) and different composition of Indium on the characteristics of p-i-n type solar cell. The layer thickness is an issue of the output electrical characteristics of device. A thicker active layer will absorb more incidents light, but too thick active layer will result in increasing in both series resistance and dark current, which will degenerate the performance of the device. In order to enhance the light absorption for the thin active layer of InGaN solar cell, the InGaN solar cell on sapphire was fabricated by laser lift-off technique to remove sapphire and then transferring the remaining p-i-n structure onto a Ti/Ag mirror-coated Si substrate via wafer bonding. The mirror structure can enhance light absorption for InGaN solar cell with a thin absorption layer. After the epilayer transfer, upon illuminating by standard solar simulator measurement system (one sun, 25oC, AM1.5G, 100 mW/cm2), it is found the current density of solar cell was improved from 0.31 mA/cm2 to 0.52 mA/cm2, the device exhibits an enhancement factor of 68% in current density and an increment in conversion efficiency from 0.51 % to 0.80%. It is attributed that this structure really has advantage to enhance the light absorption for solar cell application.
URI: http://hdl.handle.net/11455/4205
其他識別: U0005-0308200913335000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0308200913335000
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.